Bài 1.85 trang 28 SBT Giải tích 12 Nâng cao


Giải bài 1.85 trang 28 sách bài tập Giải tích 12 Nâng cao. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số...

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Khảo sát sự biến thiên và vẽ đồ thị  (C) của hàm số

\(y =  - {x^4} - 2{x^2} + 3\)

Lời giải chi tiết:

+) TXĐ: \(D = \mathbb{R}\)

+) Chiều biến thiên:

\(\mathop {\lim }\limits_{x \to  \pm \infty } y =  - \infty \)

\(\begin{array}{l}y' =  - 4{x^3} - 4x\\y' = 0 \Leftrightarrow  - 4{x^3} - 4x = 0\\ \Leftrightarrow  - 4x\left( {{x^2} + 1} \right) = 0\\ \Leftrightarrow x = 0\end{array}\)

BBT:

Hàm số đồng biến trên khoảng \(\left( { - \infty ;0} \right)\).

Hàm số nghịch biến trên khoảng \(\left( {0; + \infty } \right)\).

Hàm số đạt cực đại tại \(x = 0,{y_{CD}} = 3\).

+) Đồ thị:

LG b

Với giá trị nào của m, đường thẳng \(y = 8x + m\) là tiếp tuyến của đường cong (C)?

Lời giải chi tiết:

Ta có \(y' =  - 4{x^3} - 4x\)

Hoành độ có tiếp điểm của đường thẳng và đường cong (C) là nghiệm của phương trình

\( - 4{x^3} - 4x = 8\)

\(\eqalign{&  \Leftrightarrow {x^3} + x + 2 = 0  \cr &  \Leftrightarrow \left( {x + 1} \right)({x^2} - x + 2) = 0\cr& \Leftrightarrow x =  - 1 \cr} \)

M(-1;0) là tiếp điểm của đường thẳng và (C).

Vì điểm M nằm trên đường thẳng nên \(8\left( { - 1} \right) + m = 0 \).

\(\Leftrightarrow m = 8\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.