Bài 1.82 trang 27 SBT Giải tích 12 Nâng cao>
Giải bài 1.82 trang 27 sách bài tập Giải tích 12 Nâng cao. Cho hàm số...
Cho hàm số
\(y = {x^3} - 3m{x^2} + (2m - 1)x + 1\)
LG a
Chứng minh rằng với mọi giá trị của m, đồ thị \(\left( {{C_m}} \right)\) của hàm số đã cho và đường thẳng \(y = 2mx{\rm{ }}-4m + 3\) luôn có một điểm chung cố định.
Lời giải chi tiết:
Đường thẳng \(y = 2m(x - 2) + 3\) luôn đi qua điểm cố định \(A\left( {2;3} \right)\)
Vì \(f(2) = {2^3} - 3m{.2^2} + 3(2m - 1).2 + 1 = 3\) với mọi m nên điểm A thuộc \(\left( {{C_m}} \right)\) với mọi m.
LG b
Tìm giá trị của m sao cho đường thẳng đã cho và đường cong (C) cắt nhau tại ba điểm phân biệt.
Lời giải chi tiết:
Hoành độ giao điểm của đường thẳng và đường cong \(\left( {{C_m}} \right)\) là nghiệm của phương trình:
\({x^3} - 3m{x^2} +3 (2m - 1)x + 1 = 2m(x - 2) + 3\)
\(\eqalign{& \Leftrightarrow {x^3} - 3m{x^2} + 3(2m - 1)x - 2 - 2m(x - 2) = 0 \cr & \Leftrightarrow \left( {x - 2} \right)\left[ {{x^2} - \left( {3m - 2} \right)x + 1 - 2m} \right] = 0 \cr} \)
Để đường thẳng đã cho cắt (C) tại 3 điểm phân biệt thì \({{x^2} - \left( {3m - 2} \right)x + 1 - 2m} = 0\) có hai nghiệm phân biệt khác 2
\(\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
\Delta = {\left( {3m - 2} \right)^2} - 4\left( {1 - 2m} \right) > 0\\
{2^2} - \left( {3m - 2} \right).2 + 1 - 2m \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
9{m^2} - 4m > 0\\
- 8m + 9 \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m > \frac{4}{9},m < 0\\
m \ne \frac{9}{8}
\end{array} \right.
\end{array}\)
Vậy \(m < 0\) hoặc \(m > {4 \over 9}\) và \(m \ne {9 \over 8}\)
LG c
Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = 1.
Lời giải chi tiết:
Với \(m = 1\) ta có: \(y = {x^3} - 3{x^2} + 3x + 1\)
+) TXĐ: \(D = \mathbb{R}\)
+) Chiều biến thiên:
\(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ,\mathop {\lim }\limits_{x \to - \infty } y = - \infty \)
\(y' = 3{x^2} - 6x + 3\) \( = 3{\left( {x - 1} \right)^2} \ge 0,\forall x \in \mathbb{R}\)
Hàm số đồng biến trên \(\mathbb{R}\) và không có cực trị.
BBT:
+) Đồ thị:
Loigiaihay.com
- Bài 1.83 trang 27 SBT Giải tích 12 Nâng cao
- Bài 1.84 trang 27 SBT Giải tích 12 Nâng cao
- Bài 1.85 trang 28 SBT Giải tích 12 Nâng cao
- Bài 1.86 trang 28 SBT Giải tích 12 Nâng cao
- Bài 1.87 trang 28 SBT Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao