Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao


Giải bài 1.1 trang 10 sách bài tập Giải tích 12 Nâng cao

Đề bài

\(A\left( { - 1;1} \right)\) và \(B\left( {2;4} \right)\) là hai điểm của parabol \(y = {x^2}\). Xác định điểm \(C\) thuộc parabol sao cho tiếp tuyến tại \(C\) với parabol song song với đường thẳng \(AB\).

Lời giải chi tiết

Ta có: \(\overrightarrow {AB}  = \left( {3;3} \right)\) nên \(\overrightarrow {{n_{AB}}}  = \left( {1; - 1} \right)\) là VTPT của \(AB\).

\( \Rightarrow AB:1\left( {x + 1} \right) - 1\left( {y - 1} \right) = 0\) hay \(x - y + 2 = 0 \Leftrightarrow y = x + 2\)

Do đó \(AB:y = x + 2\) có hsg \({k_{AB}} = 1\)

Ta có: \(y' = 2x\).

Gọi \(C\left( {{x_0};{y_0}} \right)\) là tiếp điểm.

Tiếp tuyến tại \(C\) song song với \(AB\) nên \(y'\left( {{x_0}} \right) = {k_{AB}}\)

\(\begin{array}{l} \Leftrightarrow 2{x_0} = 1 \Leftrightarrow {x_0} = \dfrac{1}{2}\\ \Rightarrow {y_0} = {\left( {\dfrac{1}{2}} \right)^2} = \dfrac{1}{4}\\ \Rightarrow C\left( {\dfrac{1}{2};\frac{1}{4}} \right)\end{array}\)

Vậy \(C\left( {\dfrac{1}{2};\dfrac{1}{4}} \right)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài