Bài 1.15 trang 12 SBT Giải tích 12 Nâng cao


Giải bài 1.15 trang 12 sách bài tập Giải tích 12 Nâng cao. Cho hàm số ...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số \(f(x) = {4 \over \pi }x - \tan x,x \in \left[ {0;{\pi  \over 4}} \right]\)

LG a

Xét chiều biến thiên của hàm số trên đoạn \(\left[ {0;{\pi  \over 4}} \right]\)

Lời giải chi tiết:

Hàm số f liên tục tên nửa khoảng \(\left[ {0;{\pi  \over 4}} \right]\) và có đạo hàm

\(f'(x) = {4 \over \pi } - {1 \over {{{\cos }^2}x}} = {{4 - \pi } \over \pi } - {\tan ^2}x,x \in \left( {0;{\pi  \over 4}} \right)\)

\(f'(x) = 0 \Leftrightarrow \tan x = \sqrt {{{4 - \pi } \over \pi }} \)

Dễ dàng thấy rằng \(0 < \sqrt {{{4 - \pi } \over \pi }}  < 1 = \tan {\pi  \over 4}\).

Do đó tồn tại một số duy nhất \(\alpha  \in \left( {0;{\pi  \over 4}} \right)\) sao cho \(\tan \alpha  = \sqrt {{{4 - \pi } \over \pi }} \)

Bảng biến thiên

Hàm số đồng biến trên đoạn \(\left[ {0;\alpha} \right]\) và nghịch biến trên \(\left[ {\alpha ;{\pi  \over 4}} \right]\)

LG b

Từ đó suy ra rằng: \(\tan x \le {4 \over \pi }x\) với mọi \(x \in \left[ {0;{\pi  \over 4}} \right]\)

Lời giải chi tiết:

Theo bảng biến thiên ta có

\(f(x) \ge 0\) với mọi \(x \in \left[ {0;{\pi  \over 4}} \right]\)

Từ đó có bất đẳng thức cần chứng minh. 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí