Bài 1.10 trang 11 SBT Giải tích 12 Nâng cao>
Giải bài 1.10 trang 11 sách bài tập Giải tích 12 Nâng cao. Cho hàm số ...
Cho hàm số f:\(\left( {{{ - \pi } \over 4};{\pi \over 4}} \right) \to R\) xác đinh bởi
\(f(x) = \cos x{\rm{ + }}\sin x\tan {x \over 2}\)
LG a
Tìm đạo hàm của hàm số f(x)
Lời giải chi tiết:
Ta có
\(f'(x) = - {\mathop{\rm sinx}\nolimits} + \cos x\tan {x \over 2} + {{{\mathop{\rm s}\nolimits} {\rm{inx}}} \over {2{{\cos }^2}{x \over 2}}}\)
\( = - {\mathop{\rm sinx}\nolimits} + \cos x\tan {x \over 2} + \tan {x \over 2}\)
\( = - {\mathop{\rm sinx}\nolimits} + \tan {x \over 2}(1 + \cos x)\)
\( = - {\mathop{\rm sinx}\nolimits} + {\mathop{\rm sinx}\nolimits} = 0\)
với mọi x ∈ \(\left( { - {\pi \over 4};{\pi \over 4}} \right).\)
LG b
Từ a) suy ra rằng hàm số f là một hàm hằng trên khoảng \(\left( {{{ - \pi } \over 4};{\pi \over 4}} \right)\) và tìm hàm hằng đó.
Lời giải chi tiết:
Từ a) suy ra rằng f là một hàm hằng trên khoảng \(\left( { - {\pi \over 4};{\pi \over 4}} \right).\)
Do đó \(f(x) = f(0) = 1\) với mọi x ∈ \(\left( { - {\pi \over 4};{\pi \over 4}} \right).\)
Loigiaihay.com
- Bài 1.11 trang 12 SBT Giải tích 12 Nâng cao
- Bài 1.12 trang 12 SBT Giải tích 12 Nâng cao
- Bài 1.13 trang 12 SBT Giải tích 12 Nâng cao
- Bài 1.14 trang 12 SBT Giải tích 12 Nâng cao
- Bài 1.15 trang 12 SBT Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao