Bài 1.4 trang 10 SBT Giải tích 12 Nâng cao


Giải bài 1.4 trang 10 sách bài tập Giải tích 12 Nâng cao. Hãy chứng minh rằng ...

Lựa chọn câu để xem lời giải nhanh hơn

Hãy chứng minh rằng

LG a

Hàm số \(y = \sqrt {2x - {x^2}} \) nghịch biến trên đoạn [1;2]

Lời giải chi tiết:

Hàm số liên tục trên đoạn [1;2] và có đạo hàm

\(y' = {{1 - x} \over {\sqrt {2x - {x^2}} }} < 0\) với mọi \(x \in (1,2)\)

Do đó hàm số nghịch biến trên đoạn [1;2]

LG b

Hàm số \(y = \sqrt {{x^2} - 9} \) đồng biến trên nửa khoảng  \({\rm{[}}3; + \infty )\)

Lời giải chi tiết:

Hàm số liên tục trên nửa khoảng  \({\rm{[}}3; + \infty )\) và có đạo hàm

\(y' = {x \over {\sqrt {{x^2} - 9} }} > 0\) với mọi \(x \in (3, + \infty )\)

Do đó hàm dố đồng biến tên nửa khoảng \({\rm{[}}3; + \infty )\)

LG c

Hàm số \(y = x + {4 \over x}\) nghịch biến trên mỗi nửa khoảng [-2;0) và (0;2]

Lời giải chi tiết:

TXĐ: \(x\ne0\)

\(y' = 1 - {4 \over {{x^2}}}\)

\(y' = 0 \Leftrightarrow x =  \pm 2\)

BBT

Từ BBT ta có hàm số \(y = x + {4 \over x}\) nghịch biến trên mỗi nửa khoảng [-2;0) và (0;2]

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài