Bài 1.4 trang 10 SBT Giải tích 12 Nâng cao>
Giải bài 1.4 trang 10 sách bài tập Giải tích 12 Nâng cao. Hãy chứng minh rằng ...
Hãy chứng minh rằng
LG a
Hàm số \(y = \sqrt {2x - {x^2}} \) nghịch biến trên đoạn [1;2]
Lời giải chi tiết:
Hàm số liên tục trên đoạn [1;2] và có đạo hàm
\(y' = {{1 - x} \over {\sqrt {2x - {x^2}} }} < 0\) với mọi \(x \in (1,2)\)
Do đó hàm số nghịch biến trên đoạn [1;2]
LG b
Hàm số \(y = \sqrt {{x^2} - 9} \) đồng biến trên nửa khoảng \({\rm{[}}3; + \infty )\)
Lời giải chi tiết:
Hàm số liên tục trên nửa khoảng \({\rm{[}}3; + \infty )\) và có đạo hàm
\(y' = {x \over {\sqrt {{x^2} - 9} }} > 0\) với mọi \(x \in (3, + \infty )\)
Do đó hàm dố đồng biến tên nửa khoảng \({\rm{[}}3; + \infty )\)
LG c
Hàm số \(y = x + {4 \over x}\) nghịch biến trên mỗi nửa khoảng [-2;0) và (0;2]
Lời giải chi tiết:
TXĐ: \(x\ne0\)
\(y' = 1 - {4 \over {{x^2}}}\)
\(y' = 0 \Leftrightarrow x = \pm 2\)
BBT
Từ BBT ta có hàm số \(y = x + {4 \over x}\) nghịch biến trên mỗi nửa khoảng [-2;0) và (0;2]
Loigiaihay.com
- Bài 1.5 trang 11 SBT Giải tích 12 Nâng cao
- Bài 1.6 trang 11 SBT Giải tích 12 Nâng cao
- Bài 1.7 trang 11 SBT Giải tích 12 Nâng cao
- Bài 1.8 trang 11 SBT Giải tích 12 Nâng cao
- Bài 1.9 trang 11 SBT Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao