Bài 1.6 trang 11 SBT Giải tích 12 Nâng cao


Giải bài 1.6 trang 11 sách bài tập Giải tích 12 Nâng cao. Chứng minh rằng hàm số ...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Chứng minh rằng hàm số \(f(x) = x + c{\rm{o}}{{\rm{s}}^2}x\) đồng biến trên \(\mathbb R\)

Lời giải chi tiết

Ta có \(f'(x) = 1 - \sin 2x\ge0\; \forall x\)

\(f'(x) = 0 \Leftrightarrow \sin 2x = 1\)

Hàm số f liên tục trên mỗi đoạn \(\left[ {{\pi  \over 4} + k\pi ;{\pi  \over 4} + ( k+ 1)\pi } \right]\) và có đạo hàm \(f'(x) > 0\) với mọi \(x\in\left( {{\pi  \over 4} + k\pi ;{\pi  \over 4} + ( k+ 1)\pi } \right),\;k\in\mathbb Z\)

Do đó hàm số đồng biến trên mỗi đoạn \(\left[ {{\pi  \over 4} + k\pi ;{\pi  \over 4} + ( k+ 1)\pi } \right]\;k\in\mathbb Z\)

Vậy hàm số đồng biến trên \(\mathbb R\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí