Bài 1.6 trang 11 SBT Giải tích 12 Nâng cao


Giải bài 1.6 trang 11 sách bài tập Giải tích 12 Nâng cao. Chứng minh rằng hàm số ...

Đề bài

Chứng minh rằng hàm số \(f(x) = x + c{\rm{o}}{{\rm{s}}^2}x\) đồng biến trên \(\mathbb R\)

Lời giải chi tiết

Ta có \(f'(x) = 1 - \sin 2x\ge0\; \forall x\)

\(f'(x) = 0 \Leftrightarrow \sin 2x = 1\)

Hàm số f liên tục trên mỗi đoạn \(\left[ {{\pi  \over 4} + k\pi ;{\pi  \over 4} + ( k+ 1)\pi } \right]\) và có đạo hàm \(f'(x) > 0\) với mọi \(x\in\left( {{\pi  \over 4} + k\pi ;{\pi  \over 4} + ( k+ 1)\pi } \right),\;k\in\mathbb Z\)

Do đó hàm số đồng biến trên mỗi đoạn \(\left[ {{\pi  \over 4} + k\pi ;{\pi  \over 4} + ( k+ 1)\pi } \right]\;k\in\mathbb Z\)

Vậy hàm số đồng biến trên \(\mathbb R\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài