Bài 1.86 trang 28 SBT Giải tích 12 Nâng cao


Giải bài 1.86 trang 28 sách bài tập Giải tích 12 Nâng cao. Chứng minh rằng hàm số ...

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng minh rằng hàm số  \(y = {x \over {x + 1}}\) đồng biến trên mỗi khoảng xác định của nó

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash {\rm{\{ }} - 1\} \)

\(y' = {1 \over {{{\left( {x + 1} \right)}^2}}} > 0\,\,\forall x \in D\)

Do đó  hàm số  \(y = {x \over {x + 1}}\) đồng biến trên mỗi khoảng xác định của nó.

LG b

Từ đó suy ra rằng

\({{\left| {a + b} \right|} \over {1 + \left| {a + b} \right|}} \le {{\left| a \right|} \over {1 + \left| a \right|}} + {{\left| b \right|} \over {1 + \left| b \right|}}\) , với mọi \(a,b \in R\)

Lời giải chi tiết:

Vì \(\left| {a + b} \right| \le \left| a \right| + \left| b \right|\) với mọi \(a,b \in R\)  nên từ a) suy ra

\(f\left( {\left| {a + b} \right|} \right) \le f\left( {\left| a \right| + \left| b \right|} \right)\)

Hay

\({{\left| {a + b} \right|} \over {1 + \left| {a + b} \right|}} \le {{\left| a \right|+|b|} \over {1 + \left| a \right|}+|b|}= {{\left| a \right|} \over {1 + \left| a \right| + \left| b \right|}} + {{\left| b \right|} \over {1 + \left| a \right| + \left| b \right|}} \)

\(\le {{\left| a \right|} \over {1 + \left| a \right|}} + {{\left| b \right|} \over {1 + \left| b \right|}}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí