Bài 39 trang 10 SBT Hình học 12 Nâng cao>
Giải bài 39 trang 10 sách bài tập Hình học 12 Nâng cao. Cho khối chóp S.ABCD ...
Đề bài
Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA=2a. Gọi B’, D’ lần lượt là hình chiếu của A trên SB và SD. Mặt phẳng \(\left( {AB'D'} \right)\) cắt SC tại C’. Tính thể tích khối chóp S.AB’C’D’.
Lời giải chi tiết
Ta có\(AB' \bot SB,AB' \bot CB(\) do \(CB \bot \left( {SAB} \right)\))
\( \Rightarrow AB' \bot \left( {SBC} \right) \Rightarrow AB' \bot SC \;\;(1)\)
Tương tự \(AD' \bot SC\;\;\;(2)\)
Từ (1) và (2) suy ra
\(\eqalign{ & SC \bot \left( {AB'C'D'} \right) \cr & \Rightarrow SC \bot AC'. \cr} \)
Do tính đối xứng ta có
\({V_{S.AB'C'D'}} = 2{V_{S.AB'C'}}\)
Ta có
\(\eqalign{ & {{{V_{S.AB'C'}}} \over {{V_{S.ABC}}}} = {{SB'} \over {SB}}.{{SC'} \over {SC}} = {{SB'.SB} \over {S{B^2}}}.{{SC'.SC} \over {S{C^2}}} \cr & = {{S{A^2}} \over {S{B^2}}}.{{S{A^2}} \over {S{C^2}}} = {{4{a^2}} \over {5{a^2}}}.{{4{a^2}} \over {6{a^2}}} = {8 \over {15}}. \cr & {V_{S.ABC}} = {1 \over 3}.{{{a^2}} \over 2}.2a = {{{a^3}} \over 3}\cr& \Rightarrow {V_{S.AB'C'}} = {8 \over {15}}.{{{a^3}} \over 3} = {{8{a^3}} \over {45}} \cr & \Rightarrow {V_{S.AB'C'D'}} = {{16{a^3}} \over {45}}. \cr} \)
Loigiaihay.com
- Bài 40 trang 10 SBT Hình học 12 Nâng cao
- Bài 41 trang 10 SBT Hình học 12 Nâng cao
- Bài 42 trang 11 SBT Hình học 12 Nâng cao
- Bài 43 trang 11 SBT Hình học 12 Nâng cao
- Bài 44 trang 11 SBT Hình học 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao