Bài 25 trang 9 SBT Hình học 12 Nâng cao>
Giải bài 25 trang 9 sách bài tập Hình học 12 Nâng cao. Cho khối lăng trụ đứng ...
Đề bài
Cho khối lăng trụ đứng \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có đáy hình bình hành và góc \(BAD = {45^0}\). Các đường chéo AC1 và DB1 lần lượt tạo với đáy những góc 450 và 600. Hãy tính thể tích của khối lăng trụ nếu biết chiều cao của nó bằng 2.
Lời giải chi tiết
Hình lăng trụ đã cho là hình lăng trụ đứng nên các cạnh bên vuông góc với đáy và độ dài cạnh bên bằng chiều cao của hình lăng trụ. Từ giả thiết ta suy ra :
Góc \({C_1}AC = {45^0}\),góc \({B_1}DB = {60^0}\).
Từ đó suy ra
\(AC = C{C_1} = 2,BD = 2\cot {60^0} = {2 \over {\sqrt 3 }}.\)
Áp dụng định lý hàm số côsin ta có :
\(\eqalign{ & B{D^2} = A{B^2} + A{D^2} - 2AB.AD.\cos {45^0}, \cr & A{C^2} = D{C^2} + A{D^2} - 2DC.AD.\cos {135^0}, \cr} \)
Từ đó ta có:
\(\eqalign{ & B{D^2} - A{C^2} = - AB.AD.\sqrt 2 + DC.AD.\left( { - \sqrt 2 } \right)\cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = - 2\sqrt 2 AB.AD \cr & \Rightarrow {4 \over 3} - 4 = - 2\sqrt 2 AB.AD \cr&\Rightarrow AB.AD = {8 \over {3.2\sqrt 2 }} = {4 \over {3\sqrt 2 }}. \cr & {V_{ABCD.{A_1}{B_1}{C_1}{D_1}}} = AB.AD.\sin {45^0}{\rm{.A}}{{\rm{A}}_1} \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;= {4 \over {3\sqrt 2 }}.{{\sqrt 2 } \over 2}.2 = {4 \over 3}. \cr} \)
Loigiaihay.com
- Bài 26 trang 9 SBT hình học 12 nâng cao
- Bài 27 trang 9 SBT Hình học 12 Nâng cao
- Bài 28 trang 9 SBT Hình học 12 Nâng cao
- Bài 29 trang 9 SBT Hình học 12 Nâng cao
- Bài 30 trang 9 SBT Hình học 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao