Bài 51 trang 12 SBT Hình học 12 Nâng cao


Giải bài 51 trang 12 sách bài tập Hình học 12 Nâng cao. Chứng minh rằng tổng các khoảng cách ...

Đề bài

Chứng minh rằng tổng các khoảng cách từ một điểm nằm trong một hình lăng trụ đều đến các mặt của nó không phụ thuộc vào vị trí của điểm nằm trong hình lăng trụ đó.

Quảng cáo

Lộ trình SUN 2025

Lời giải chi tiết

Gọi hình lăng trụ đều đã cho là H.

Khi đó, dễ thấy tổng các khoảng cách từ một điểm nằm trong H đến hai mặt đáy của nó luôn bằng chiều cao h của H.

Giả sử I là một điểm trong nào đó của H .

Dựng qua I một mặt phẳng \(\left( P \right)\) vuông góc với cạnh bên của H, ta được thiết diện thẳng A1A2…An của H. Khi đó, A1A2…Alà một đa giác đều bằng đa giác đáy của H (do H là lăng trụ đều).

Từ I ta kẻ đường \(I{H_1} \bot {A_1}{A_2},I{H_2} \bot {A_2}{A_3},...I{H_n} \bot {A_n}{A_1}.\)

Do thiết diện thẳng vuông góc với các mặt bên nên từ đó dễ dàng suy ra : \(I{H_1},I{H_2},...,I{H_n}\) lần lượt vuông góc với các mặt bên của hình lăng trụ .

Đặt \(I{H_1} = {h_1},I{H_2} = {h_2},...,I{H_n} = {h_n}\) và a là độ dài cạnh đáy của lăng trụ.

Gọi S là diện tích một mặt đáy thì S cũng là diện tích của A1A2…An. Vậy

\(\eqalign{  & S = {1 \over 2}a{h_1} + {1 \over 2}a{h_2} + ... + {1 \over 2}a{h_n} \cr&\;\;\;= {1 \over 2}a({h_1} + {h_2} + ... + {h_n})  \cr  &  \Rightarrow {h_1} + {h_2} + ... + {h_n} = {{2S} \over a}. \cr} \)

Vậy tổng các khoảng từ I đến các mặt của lăng trụ là không đổi.

Tổng này bằng \(h+{{2S} \over a}.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2024 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.