Bài 47 trang 11 SBT Hình học 12 Nâng cao>
Giải bài 47 trang 11 sách bài tập Hình học 12 Nâng cao. Cho điểm M trên cạnh SA, ...
Đề bài
Cho điểm M trên cạnh SA, điểm N trên cạnh SB của khối chóp tam giác S.ABC sao cho \({{SM} \over {MA}} = {1 \over 2},{{SN} \over {NB}} = 2.\) Mặt phẳng \(\left( \alpha \right)\) đi qua MN và song song với SC chia khối chóp thành hai phần. Tìm tỉ số thể tích hai phần đó.
Lời giải chi tiết
Kéo dài MN cắt AB tại I. Kẻ MD song song với \(SC\left( {D \in AC} \right)\), DI cắt CB tại E.
Vậy tứ giác MNED là thiết diện của khối chóp khi cắt bởi \(mp\left( \alpha \right)\). Ta có
\(\eqalign{ & {{{V_{A.MDI}}} \over {{V_{A.SCB}}}} = {{AM} \over {AS}}.{{AD} \over {AC}}.{{AI} \over {AB}} \cr & = {2 \over 3}.{2 \over 3}.{4 \over 3} = {{16} \over {27}} \cr & \Rightarrow {V_{A.MDI}} = {{16} \over {27}}{V_{S.ABC}} \cr &(BI = MJ,MJ = {1 \over 3}AB\cr& \Rightarrow BI = {1 \over 3}AB,AI = {4 \over 3}AB ). \cr & {{{V_{I.BNE}}} \over {{V_{I.AMD}}}} = {{IB} \over {IA}}.{{IN} \over {IM}}.{{IE} \over {ID}} = {1 \over 4}.{1 \over 2}.{1 \over 2} = {1 \over {16}} \cr & \Rightarrow {V_{I.BNE}} = {1 \over {16}}{V_{A.MDI}} = {1 \over {27}}{V_{S.ABC}} \cr} \)
Gọi \({V_1} = {V_{AMD.BNE}},{V_2}\) là phần còn lại thì
\({V_1} = {V_{A.MDI}} - {V_{I.BNE}} = {{15} \over {27}}{V_{S.ABC}} = {5 \over 9}{V_{S.ABC}}\)
Nên \({V_2} = {V_{S.ABC}} - {V_1} = {4 \over 9}{V_{S.ABC}}\) và \({{{V_1}} \over {{V_2}}} = {5 \over 4}\)
Loigiaihay.com
- Bài 48 trang 11 SBT Hình học 12 Nâng cao
- Bài 49 trang 11 SBT Hình học 12 Nâng cao
- Bài 50 trang 11 SBT Hình học 12 Nâng cao
- Bài 51 trang 12 SBT Hình học 12 Nâng cao
- Bài 52 trang 12 SBT Hình học 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao