Bài 33 trang 10 SBT Hình học 12 Nâng cao


Giải bài 33 trang 10 sách bài tập Hình học 12 Nâng cao. Cho khối chóp tam giác đều ...

Đề bài

Cho khối chóp tam giác đều \(S.ABC\) có chiều cao bằng h và góc ASB bằng \(2\varphi \). Hãy tính thể tích khối chóp.

Lời giải chi tiết

Giả sử O là tâm của tam giác đều ABC.

Khi đó \(SO \bot \left( {ABC} \right)\) và SO = h.

Gọi K là trung điểm của AB. Đặt AK = x.

Khi đó \(\eqalign{  & SK = x\cot \varphi ;\;OK = xtan{30^0} = {x \over {\sqrt 3 }}.  \cr  & {h^2} = S{K^2} - O{K^2} = {{{x^2}} \over 3}(3{\cot ^2}\varphi  - 1)  \cr  &  \Rightarrow {x^2} = {{3{h^2}} \over {3{{\cot }^2}\varphi  - 1}}. \cr} \)

Ta có: \(\eqalign{  & {S_{ABC}} = {{A{B^2}\sin {{60}^0}} \over 2} = {x^2}\sqrt 3 ,  \cr  &  \Rightarrow {V_{S.ABC}} = {1 \over 3}{S_{ABC}}.h = {{{x^2}\sqrt 3 } \over 3}h \cr&= {{{h^3}\sqrt 3 } \over {3{{\cot }^2}\varphi  - 1}}. \cr} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài