Bài 52 trang 12 SBT Hình học 12 Nâng cao>
Giải bài 52 trang 12 sách bài tập Hình học 12 Nâng cao. Cho hình lăng trụ đứng ABC.A’B’C’ ...
Cho hình lăng trụ đứng ABC.A’B’C’ mà đáy là tam giác vuông tại B có AB=a, BD=b, AA’=c\(\left( {{c^2} \ge {a^2} + {b^2}} \right).\) Một mặt phẳng \(\left( P \right)\) đi qua A và vuông góc với CA’.
LG a
Xác định thiết diện của hình lăng trụ khi cắt bởi \(mp\left( P \right).\)
Lời giải chi tiết:
Trong \(mp\left( {AA'C'C} \right)\), dựng đường thẳng qua A vuông góc với CA’ lần lượt cắt CA’ và CC’ tại I và M.
Vì \(AC = \sqrt {{a^2} + {b^2}} \le c\) nên \(IC \le IA',\) do đó M phải thuộc đoạn CC’.
Bây giờ ta tìm giao điểm N và \(\left( P \right)\) và BB’. Dễ thấy \(AN \bot BC,AN \bot CA'\)
\( \Rightarrow AN \bot A'B.\) Vậy để tìm N, ta kẻ qua A (trong \(mp\left( {A'B'BA} \right)\)) đường thẳng vuông góc với A’B cắt B’B tại N.
Vậy thiết diện là tam giác AMN.
LG b
Tính diện tích thiết diện nói trên.
Lời giải chi tiết:
Ta có : \({V_{A'.AMN}} = {V_{M.AA'N}} \) \(= {V_{M.AA'B}} = {V_{C.A'AB}} = {1 \over 6}abc\)
(do \(NB//AA',MC// AA').\)
Mặt khác :
\({V_{A'.AMN}} = {1 \over 3}.{S_{AMN}}.A'I \)
\(\Rightarrow {S_{AMN}} = {{3{V_{A'.AMN}}} \over {A'I}} = {{abc} \over {2A'I}}.\)
Xét tam giác vuông A’AC ta có :
\(A'I.A'C = AA{'^2} = {c^2} \) \(\Rightarrow A'I = {{{c^2}} \over {A'C}} = {{{c^2}} \over {\sqrt {{a^2} + {b^2} + {c^2}} }}\).
Vậy \({S_{AMN}} = {{ab\sqrt {{a^2} + {b^2} + {c^2}} } \over {2c}}.\)
Loigiaihay.com
- Bài 53 trang 12 SBT Hình học 12 Nâng cao
- Bài 54 trang 12 SBT Hình học 12 Nâng cao
- Bài 51 trang 12 SBT Hình học 12 Nâng cao
- Bài 50 trang 11 SBT Hình học 12 Nâng cao
- Bài 49 trang 11 SBT Hình học 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao