Bài 23 trang 9 SBT Hình học 12 Nâng cao>
Giải bài 23 trang 9 sách bài tập Hình học 12 Nâng cao. Cho khối lăng trụ tứ giác đều ABCD.A1B1C1D1 ...
Cho khối lăng trụ tứ giác đều ABCD.A1B1C1D1 có khoảng cách giữa hai đường thẳng AB và A1D bằng 2 và độ dài đường chéo của mặt bên bằng 5.
LG a
Hạ \(AK \bot {A_1}D\left( {K \in {A_1}D} \right)\). Chứng minh rằng AK=2.
Lời giải chi tiết:
\(\eqalign{ & AB//{A_1}{B_1} \Rightarrow AB// \left( {{A_1}{B_1}D} \right) \cr & \Rightarrow {d_{\left( {A,\left( {{A_1}{B_1}D} \right)} \right)}} = {d_{\left( {AB,{A_1}D} \right)}}. \cr} \)
Ta có :
\(\eqalign{ & {A_1}{B_1} \bot \left( {A{A_1}{D_1}D} \right) \cr & \Rightarrow {A_1}{B_1} \bot AK. \cr} \)
Mặt khác \({A_1}D \bot AK,\) suy ra \(AK \bot \left( {{A_1}{B_1}D} \right)\)
Vậy \(AK = d\left( {A,\left( {{A_1}{B_1}D} \right)} \right)\)\( = d\left( {AB,{A_1}D} \right) = 2\)
LG b
Tính thể tích khối lăng trụ ABCD.A1B1C1D1.
Lời giải chi tiết:
Xét tam giác vuông \({A_1}AD\), ta có :
\(A{K^2} = {A_1}K.KD.\)
Đặt A1K = x \(4 = x\left( {5 - x} \right) \Rightarrow {x^2} - 5x + 4 = 0 \)
\(\Rightarrow \left[ \matrix{ x = 1 \hfill \cr x = 4 \hfill \cr} \right.\)
Với x=1, \(AD = \sqrt {A{K^2} + K{D^2}} = 2\sqrt 5 \)
\({\rm{A}}{{\rm{A}}_1} = \sqrt {{A_1}{D^2} - A{D^2}} = \sqrt 5 \)
Khi đó \({V_{ABCD.{A_1}{B_1}{C_1}{D_1}}} = 20\sqrt 5 \)
Với x=4, tương tự ta có :\({V_{ABCD.{A_1}{B_1}{C_1}{D_1}}} = 10\sqrt 5 \).
Loigiaihay.com
- Bài 24 trang 9 SBT Hình học 12 Nâng cao
- Bài 25 trang 9 SBT Hình học 12 Nâng cao
- Bài 26 trang 9 SBT hình học 12 nâng cao
- Bài 27 trang 9 SBT Hình học 12 Nâng cao
- Bài 28 trang 9 SBT Hình học 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao