Bài 23 trang 9 SBT Hình học 12 Nâng cao


Giải bài 23 trang 9 sách bài tập Hình học 12 Nâng cao. Cho khối lăng trụ tứ giác đều ABCD.A1B1C1D1 ...

Lựa chọn câu để xem lời giải nhanh hơn

Cho khối lăng trụ tứ giác đều ABCD.A1B1C1D1 có khoảng cách giữa hai đường thẳng AB và A1D bằng 2 và độ dài đường chéo của mặt bên bằng 5.

LG a

Hạ \(AK \bot {A_1}D\left( {K \in {A_1}D} \right)\). Chứng minh rằng AK=2.

Lời giải chi tiết:

\(\eqalign{  & AB//{A_1}{B_1} \Rightarrow AB// \left( {{A_1}{B_1}D} \right)  \cr  &  \Rightarrow {d_{\left( {A,\left( {{A_1}{B_1}D} \right)} \right)}} = {d_{\left( {AB,{A_1}D} \right)}}. \cr} \)

Ta có :

\(\eqalign{  & {A_1}{B_1} \bot \left( {A{A_1}{D_1}D} \right)  \cr  &  \Rightarrow {A_1}{B_1} \bot AK. \cr} \)

Mặt khác \({A_1}D \bot AK,\) suy ra \(AK \bot \left( {{A_1}{B_1}D} \right)\)

Vậy \(AK = d\left( {A,\left( {{A_1}{B_1}D} \right)} \right)\)\( = d\left( {AB,{A_1}D} \right) = 2\)

LG b

Tính thể tích khối lăng trụ ABCD.A1B1C1D1.

Lời giải chi tiết:

Xét tam giác vuông \({A_1}AD\), ta có :

\(A{K^2} = {A_1}K.KD.\)

Đặt A1K = x \(4 = x\left( {5 - x} \right) \Rightarrow {x^2} - 5x + 4 = 0 \)

\(\Rightarrow \left[ \matrix{  x = 1 \hfill \cr  x = 4 \hfill \cr}  \right.\)

Với x=1, \(AD = \sqrt {A{K^2} + K{D^2}}  = 2\sqrt 5 \)

\({\rm{A}}{{\rm{A}}_1} = \sqrt {{A_1}{D^2} - A{D^2}}  = \sqrt 5 \)

Khi đó \({V_{ABCD.{A_1}{B_1}{C_1}{D_1}}} = 20\sqrt 5 \)

Với x=4, tương tự ta có :\({V_{ABCD.{A_1}{B_1}{C_1}{D_1}}} = 10\sqrt 5 \).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài