Bài 31 trang 10 SBT Hình học 12 Nâng cao


Đề bài

Hãy tính thể tích của khối hộp nếu biết độ dài cạnh bên bằng a, diện tích hai mặt chéo lần lượt là \({S_1},{S_2}\) và góc giữa hai mặt chéo bằng \(\alpha \).

Lời giải chi tiết

Giả sử hình hộp đã cho là \(ABCD.{A_1}{B_1}{C_1}{D_1}\).

Gọi \({\rm{O}}{{\rm{O}}_1}\) là giao tuyến của hai mặt chéo.

Trong hai mặt chéo \(\left( {{A_1}{C_1}CA} \right)\) và \(\left( {{B_1}{D_1}DB} \right)\), qua điểm \(I \in O{O_1}\), ta lần lượt kẻ hai đường thẳng KE và MH đều vuông góc với \(O{O_1}\).

Khi đó \(\alpha  = \left( {MH,KE} \right)\) và MEHK là thiết diện thẳng khối hộp.

Đặt \(KE = x,MH = y\) thì \({S_{MEHK}} = {1 \over 2}xy\sin \alpha .\)

Áp dụng kết quả bài tập 30, ta có:

Vhộp = \({S_{MKHE}}.A{A_1} = {1 \over 2}xya\sin \alpha .\)

Nhưng \(xa = {S_1},ya = {S_2}\) suy ra \(x = {{{S_1}} \over a},y = {{{S_2}} \over a} \)

\(\Rightarrow xy = {{{S_1}{S_2}} \over {{a^2}}}.\)

Vậy Vhộp\( = {{{S_1}{S_2}\sin \alpha } \over {2a}}.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.