Bài 40 trang 10 SBT Hình học 12 Nâng cao>
Giải bài 40 trang 10 sách bài tập Hình học 12 Nâng cao. Tính thể tích khối tứ diện ABCD ...
Đề bài
Tính thể tích khối tứ diện ABCD có các cặp cạnh đối bằng nhau :
\(AB=CD=a, AC=BD=b,AD=BC=c\)
Lời giải chi tiết
Dựng tứ diện APQR sao cho B, C, D lần lượt là trung điểm của các cạnh QR, RP, PQ.
Ta có \(AD = BC = {1 \over 2}PQ\) mà D là trung điểm của PQ nên \(AQ \bot {\rm{AP}}{\rm{.}}\)
Chứng minh tương tự, ta cũng có \(AQ \bot {\rm{AR}},{\rm{AR}} \bot AP.\)
Dễ thấy :
\({V_{ABCD}} = {1 \over 4}{V_{APQR}} = {1 \over 4}.{1 \over 6}.AP.AQ.{\rm{AR}}( * )\)
Xét các tam giác vuông \(APQ,AQR,ARP,\) ta có
\(A{P^2} + A{Q^2} = 4{c^2},\)
\(A{Q^2} + {\rm{A}}{{\rm{R}}^2} = 4{a^2},\)
\({\rm{A}}{{\rm{R}}^2} + A{P^2} = 4{b^2}.\)
Từ đó suy ra :
\(\eqalign{ & AP = \sqrt 2 .\sqrt { - {a^2} + {b^2} + {c^2}} ,\cr&AQ = \sqrt 2 \sqrt {{a^2} - {b^2} + {c^2}} , \cr & {\rm{A}}{{\rm{R}}} = \sqrt 2 \sqrt {{a^2} + {b^2} - {c^2}} . \cr} \)
Vậy từ \(\left( * \right)\) ta suy ra :
Loigiaihay.com
- Bài 41 trang 10 SBT Hình học 12 Nâng cao
- Bài 42 trang 11 SBT Hình học 12 Nâng cao
- Bài 43 trang 11 SBT Hình học 12 Nâng cao
- Bài 44 trang 11 SBT Hình học 12 Nâng cao
- Bài 45 trang 11 SBT Hình học 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao