Bài 30 trang 22 SGK Toán 9 tập 2

Bình chọn:
4.1 trên 147 phiếu

Giải bài 30 trang 22 SGK Toán 9 tập 2. Một ô tô đi từ A và dự định đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35 km/h

Đề bài

Một ô tô đi từ \(A\) và dự định đến B lúc \(12\) giờ trưa. Nếu xe chạy với vận tốc \(35 km/h\) thì sẽ đến \(B\) chậm \(2\) giờ so với quy định. Nếu xe chạy với vận tốc \(50 km/h\) thì sẽ đến \(B\) sớm \(1\) giờ so với quy định. Tính độ dài quãng đường \(AB\) và thời điểm xuất phát của ôtô tại \(A\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức: \(S=v.t\), trong đó \(S\) là quãng đường đi được (km); \(v\) là vận tốc (km/h); \(t\) là thời gian (h).

Lời giải chi tiết

Gọi \(x \) (km) là độ dài quãng đường \(AB\), \(y\) (giờ) là thời gian dự định đi để đến \(B\) đúng lúc \(12\) giờ trưa. Điều kiện \(x > 0, y > 1\) (do ôtô đến \(B\) sớm hơn \(1\) giờ).

+) Trường hợp 1:

Xe đi với vận tốc \(35\) km  (h)

Xe đến \(B\) chậm hơn \(2\) giờ nên thời gian đi hết là: \(y+2\) (giờ)

Quãng đường đi được là: \(35(y+2)\)

Vì quãng đường không đổi nên ta có phương trình: \(x=35(y+2)\)

+) Trường hợp 2:

Xe đi với vận tốc: \(50\) km/h

Vì xe đến \(B\) sớm hơn \(1\) giờ nên thời gian đi hết là: \(y-1\) (giờ)

Quãng đường đi được là: \(50(y-1) \)

Vì quãng đường không đổi nên ta có phương trình: \(x=35(y-1)\)

Ta có hệ phương trình:

\(\left\{\begin{matrix} x = 35(y + 2) & & \\ x = 50(y - 1) & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x = 35y + 70 & & \\ x = 50y - 50 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x - 35y = 70 \ (1) & & \\ x - 50y =- 50 \ (2) & & \end{matrix}\right.\)

Lấy vế trừ vế của (1) cho (2), ta được:

\(\left\{\begin{matrix} 15y =120 & & \\ x -50y =- 50 & & \end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} y =6 & & \\ x =- 50+50y & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y =8 & & \\ x  =- 50+50.8 & & \end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} y =8 & & \\ x  =350 & & \end{matrix} (thỏa\ mãn)\right.\)

Vậy quãng đường \(AB\) là \(350\)km.

Thời điểm xuất phát của ô tô tại \(A\) là: \(12 - 8 = 4\) giờ.

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Các bài liên quan: - Bài 5. Giải bài toán bằng cách lập hệ phương trình

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu