Bài 15 trang 40 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập a) Vẽ đồ thị (P).

Đề bài

Cho (P): \(y = \dfrac{{{x^2}}}{4}\) và (D) \(y = -x + 3\)

a) Vẽ đồ thị (P).

b) Viết phương trình đường thẳng (d) song song với (D) và cắt đồ thị (P) tại điểm có hoành độ là -4.

Phương pháp giải - Xem chi tiết

Cho hai đường thẳng \(\left( d \right)y = ax + b;\,\,\,\left( {d'} \right)y = a'x + b'\) . (d) và (d’) song song với nhau khi và chỉ khi \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.\)

Lời giải chi tiết

a) Vẽ đồ thị (P).

Bảng giá trị

\(x\)

\( - 4\)

\( - 2\)

0

2

4

\(y = \dfrac{1}{4}{x^2}\)

\(4\)

\(1\)

0

1

4

Vậy đồ thị hàm số \(y = \dfrac{1}{4}{x^2}\) là parabol và đi qua các điểm có tọa độ là \(\left( { - 4;4} \right);\left( { - 2;1} \right);\left( {0;0} \right);\left( {2;1} \right);\left( {4;4} \right)\)

 

b) Viết phương trình đường thẳng (d) song song với (D): \(y = -x + 3\) và cắt đồ thị (P) tại điểm có hoành độ là -4.

Gọi đường thẳng (d) cần tìm có dạng \(y = ax + b\) .

Do (d) song song với (D): \(y = -x + 3\) nên ta có: \(\left\{ \begin{array}{l}a =  - 1\\b \ne 3\end{array} \right.\) . Khi đó (d) có dạng: \(y =  - x + b\,\,\left( {b \ne 3} \right)\)

(d) cắt (P) tại điểm có hoành độ bằng -4 nên  \(x = - 4\) thay vào (P) :\(y = \dfrac{1}{4}{x^2}\) ta được:\(y = \dfrac{1}{4}.{\left( { - 4} \right)^2} = 4\) . Nên điểm có tọa độ \(\left( { - 4;4} \right)\) thuộc đồ thị hàm số (d).

Khi đó thay \(x =  - 4;y = 4\)  vào (d) ta có: \(4 =  - \left( { - 4} \right) + b \Leftrightarrow b = 0\left( {tm} \right)\)

Vậy phương trình đường thẳng (d) cần tìm là: \(y =  - x\)

Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com