Bài 61 trang 145 SBT toán 7 tập 1


Giải bài 61 trang 145 sách bài tập toán 7 tập 1. Cho tam giác ABC vuông tại A có AB = AC ...

Đề bài

Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = AC.\) Qua \(A\) kẻ đường thẳng \(xy\) (\(B, C\) nằm cùng phía đối với \(xy\)). Kẻ \(BD\) và \(CE\) vuông góc với \(xy\). Chứng minh rằng:

a) \(∆BAD = ∆ACE\).

b) \(DE = BD + CE\).

Phương pháp giải - Xem chi tiết

- Trong tam giác vuông hai góc nhọn phụ nhau.

- Nếu cạnh huyền và góc nhọn của tam giác vuông nay bằng cạnh huyền, góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Lời giải chi tiết

a) Ta có: \(\widehat {BA{\rm{D}}} + \widehat {BAC} + \widehat {CA{\rm{E}}} = 180^\circ \)

Mà \(\widehat {BAC} = 90^\circ \left( {gt} \right) \) \(\Rightarrow \widehat {BA{\rm{D}}} + \widehat {CA{\rm{E}}} = 90^\circ \)            (1)

Xét \(∆AEC\) có \(\widehat {A{\rm{E}}C} = 90^\circ\)

\(  \Rightarrow \widehat {CA{\rm{E}}} + \widehat {AC{\rm{E}}}{\rm{ = 90}}^\circ \)              (2)

Từ (1) và (2) suy ra: \(\widehat {BA{\rm{D}}} = \widehat {AC{\rm{E}}}\)

Xét hai tam giác vuông \(AEC\) và \(BDA\), ta có: 

\(\widehat {A{\rm{E}}C} = \widehat {B{\rm{D}}A} = 90^\circ \)

\(AC = AB\) (gt)

\(\widehat {AC{\rm{E}}} = \widehat {BA{\rm{D}}}\) (chứng minh trên)

\( \Rightarrow   ∆AEC = ∆BDA\) (cạnh huyền, góc nhọn)

b) Ta có: \(∆AEC = ∆BDA\) (theo câu a)

\( \Rightarrow  AE = BD\;; EC = DA\) (các cạnh tương ứng)

Mà \(DE = DA + AE\)

Vậy \(DE = CE + BD\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 17 phiếu

>> Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài