Bài 49 trang 164 SBT toán 9 tập 1


Giải bài 49 trang 164 sách bài tập toán 9. Cho đường tròn (O), điểm M nằm bên ngoài đường tròn. Kẻ tiếp tuyến MD, ME với đường tròn (D, E là các tiếp điểm). Qua điểm I thuộc cung nhỏ DE, kẻ tiếp tuyến với đường tròn, cắt MD và ME theo thứ tự ở P và Q. Biết MD = 4cm, tính chu vi tam giác MPQ.

Đề bài

Cho đường tròn \((O),\) điểm \(M\) nằm bên ngoài đường tròn. Kẻ tiếp tuyến \(MD, ME\) với đường tròn \((D, E\) là các tiếp điểm)\(.\) Qua điểm \(I\) thuộc cung nhỏ \(DE,\) kẻ tiếp tuyến với đường tròn, cắt \(MD\) và \(ME\) theo thứ tự ở \(P\) và \(Q.\) Biết \(MD = 4cm,\) tính chu vi tam giác \(MPQ.\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức: Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì điểm đó cách đều hai tiếp điểm.

Lời giải chi tiết

Xét đường tròn (O) có:

+ \(MD = ME\) (tính chất hai tiếp tuyến cắt nhau)

+ \( PD = PI\) (tính chất hai tiếp tuyến cắt nhau)

+ \(QI = QE\) (tính chất hai tiếp tuyến cắt nhau)

Chu vi tam giác \(MPQ\) bằng:

\(MP + PQ + QM\)

\(= MP + PI + IQ + QM\)

\( = MP + PD + QM + QE\)

\(= MD + ME\)

\( = 2.MD\)

\( = 2.4 = 8 (cm)\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài