Bài 142 trang 97 SBT Toán 8 tập 1


Giải bài 142 trang 97 sách bài tập toán 8. Cho hình bình hành ABCD, các đường chéo cắt nhau ở O. Gọi E, F, G, H theo thứ tự là giao điểm của các đường phân giác của các tam giác AOB, BOC, COD, DOA...

Đề bài

Cho hình bình hành \(ABCD,\) các đường chéo cắt nhau ở \(O.\) Gọi \(E,\, F,\, G,\, H\) theo thứ tự là giao điểm của các đường phân giác của các tam giác \(AOB,\, BOC,\, COD,\, DOA.\) Chứng minh rằng \(EFGH\) là hình thoi.

Phương pháp giải - Xem chi tiết

Chứng minh hình bình hành có hai đường chéo vuông góc với nhau tại trung điểm của mỗi đường là hình thoi.

Lời giải chi tiết

Ta có: \(\widehat {AOB} = \widehat {COD}\) (đối đỉnh)

\(\widehat {EOB} = \displaystyle {1 \over 2}\widehat {AOB}\) (gt)

\(\widehat {COG} = \displaystyle {1 \over 2}\widehat {COD}\) (gt)

Suy ra: \(\widehat {EOB} = \widehat {COG}\)

\(\widehat {EOB} + \widehat {BOC} + \widehat {COG} \)\(= 2\widehat {EOB} + \widehat {BOC}\)

mà \(\widehat {AOB} + \widehat {BOC} = {180^0}\) (kề bù)

hay \(2\widehat {EOB} + \widehat {BOC} = {180^0}\)

Suy ra: \(E,\, O,\, G\) thẳng hàng

Ta lại có: \(\widehat {BOC} = \widehat {AOD}\) (đối đỉnh)

\(\widehat {HOD} = \displaystyle {1 \over 2}\widehat {AOD}\) (gt)

\(\widehat {FOC} = \displaystyle {1 \over 2}\widehat {BOC}\) (gt)

Suy ra: \(\widehat {HOD} = \widehat {FOC}\)

\(\widehat {HOD} + \widehat {COD} + \widehat {FOC}\)\( = 2\widehat {HOD} + \widehat {COD}\)

mà \(\widehat {AOD} + \widehat {COD} = {180^0}\) (kề bù)

hay \(2\widehat {HOD} + \widehat {COD} = {180^0}\)             

Suy ra: \(H,\, O,\, F\) thẳng hàng

\(\widehat {ADO} = \widehat {CBO}\) (so le trong)

\(\widehat {HDO} = \displaystyle {1 \over 2}\widehat {ADO}\) (gt)

\(\widehat {FBO} = \displaystyle {1 \over 2}\widehat {CBO}\) (gt)

Suy ra: \(\widehat {HDO} = \widehat {FBO}\)

- Xét \(∆ BFO\) và \(∆ DHO:\)

\(\widehat {HDO} = \widehat {FBO}\) (chứng minh trên)

\(OD = OB\) (tính chất hình bình hành)

\(\widehat {HOD} = \widehat {FOB}\) (đối đỉnh)

Do đó: \(∆ BFO = ∆ DHO \,(g.c.g)\)

\(⇒ OF = OH\)

\(\widehat {OAB} = \widehat {OCD}\) (so le trong)

\(\widehat {OAE} = \displaystyle {1 \over 2}\widehat {OAB}\) (gt)

\(\widehat {OCG} = \displaystyle {1 \over 2}\widehat {OCD}\) (gt)

Suy ra: \(\widehat {OAE} = \widehat {OCG}\)       

- Xét \(∆ OAE\) và \(∆ OCG:\)

\(\widehat {OAE} = \widehat {OCG}\) (chứng minh trên)

\(OA = OC\) (tính chất hình bình hành)

\(\widehat {EOA} = \widehat {GOC}\) (đối đỉnh)

Do đó: \(∆ OAE = ∆ OCG \,(g.c.g)\)

\(⇒ OE = OG\)

Suy ra: Tứ giác \(EFGH\) là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Ta có OE là tia phân giác góc AOB và OF là tia phân giác góc BOC

Mà hai góc AOB và BOC kề bù

Nên \(OE ⊥ OF\) (tính chất hai tia phân giác của hai góc kề bù thì vuông góc với nhau)

hay \(EG ⊥ FH\)

Vậy: Tứ giác \(EFGH\) là hình thoi.

Loigiaihay.com


Bình chọn:
4.4 trên 11 phiếu
  • Bài 143 trang 97 SBT Toán 8 tập 1

    Giải bài 143 trang 97 sách bài tập toán 8. Dựng hình thoi ABCD, biết cạnh bằng 2cm, một đường chéo bằng 3cm...

  • Bài 11.1 phần bài tập bổ sung trang 97 SBT Toán 8 tập 1

    Giải bài 11.1 phần bài tập bổ sung trang 97 SBT Toán 8 tập 1. Hãy chọn phương án đúng. Cạnh của một hình thoi bằng 25, một đường chéo bằng 14. Đường chéo kia bằng: A. 24; B. 48...

  • Bài 11.2 phần bài tập bổ sung trang 97 SBT Toán 8 tập 1

    Giải bài 11.2 phần bài tập bổ sung trang 97 sách bài tập toán 8. Cho hình thang cân ABCD( AB // CD). Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì ?...

  • Bài 11.3 phần bài tập bổ sung trang 98 SBT Toán 8 tập 1

    Giải bài 11.3 phần bài tập bổ sung trang 98 sách bài tập toán 8. a. Tứ giác AIDK là hình gì ? b. Điểm D ở vị trí nào trên cạnh BC thì AIDK là hình thoi ?...

  • Bài 141 trang 97 SBT Toán 8 tập 1

    Giải bài 141 trang 97 sách bài tập toán 8. Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD = CE. Gọi M, N, I, K theo thứ tự là trung điểm của BE, CD, DE, BC...

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí