Đề kiểm tra 15 phút - Đề số 5 - Bài 3 - Chương 2 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 3 - Chương 2 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Cho hai đường thẳng (d1) : \(y = -2x + 1\) và (d2) : \(y = (2m – 3 )x + 3 – m .\) 

Tìm m để đường thẳng (d2) đi qua điểm A thuộc (d1) và điểm A có tung độ bằng 3. 

Bài 2. Cho đường thẳng (d): \(y = -3x\). Viết phương trình của đường thẳng (d’) song song với (d) và có tung độ gốc bằng 2.

Bài 3. Cho ba điểm \(A(0; -3), B(1; -1), C(-1; -5).\) Chứng tỏ A, B, C thẳng hàng.

LG bài 1

Phương pháp giải:

Tìm tọa độ điểm A rồi thay tọa độ đó vào phương trình đường thẳng \(d_2\) để tìm \(m\).

Lời giải chi tiết:

Đặt \(A\left( {{x_0};3} \right),A \in \left( {{d_1}} \right) \)\(\;\Rightarrow 3 =  - 2{x_0} + 1 \Rightarrow {x_0} =  - 1\)

Vậy \(A(-1 ; 3)\) 

Lại có (d2) qua A nên : \(3 = \left( {2m - 3} \right).\left( { - 1} \right) + 3 - m\)\( \Leftrightarrow m = 1\)

LG bài 2

Phương pháp giải:

Hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\) song song với nhau khi và chỉ khi \(a = a', b ≠ b'\)

Lời giải chi tiết:

Vì (d’) // (d) nên phương trình đường thẳng của (d’) là : \(y = -3x + b\) (\(b\ne 0\))

Đường thẳng (d’) có tung độ gốc bằng \(2 ⇒ b = 2\) (thỏa mãn)

Vậy phương trình của (d’) là \(y = -3x + 2\).

LG bài 3

Phương pháp giải:

Viết phương trình đường thẳng d đi qua hai điểm A và B

Rồi thay tọa độ điểm C vào phương trình đường thẳng d, từ đó suy ra \(C\in d\) hay A, B, C thẳng hàng. 

Lời giải chi tiết:

Đường thẳng (d) qua A và B có phương trình : \(y = ax + b\)

Vì \(A ∈ (d) ⇒ -3 = a.0 + b ⇒ b = -3\) 

Khi đó, ta có: \(y = ax – 3\)

Vì \(B \in \left( d \right) \Rightarrow  - 1 = a.1 - 3 \Rightarrow a = 2\)

Vậy (d) : \(y = 2x – 3\)

Thế tọa độ của \(C(-1; -5)\) vào phương trình của (d), ta được :

\( - 5 = 2.\left( { - 1} \right) - 3 \Leftrightarrow  - 5 =  - 5\) (luôn đúng)

Vậy \(C ∈ (d)\). Chứng tỏ \(A, B, C\) thẳng hàng.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài