Bài 19 trang 52 SGK Toán 9 tập 1


Giải bài 19 trang 52 SGK Toán 9 tập 1. Đồ thị của hàm số y = √3 x + √3 được vẽ bằng compa và thước thẳng

Đề bài

Đồ thị của hàm số \(y = \sqrt 3 x + \sqrt 3 \) được vẽ bằng compa và thước thẳng.

Hãy tìm hiểu cách vẽ đó rồi nêu lại các bước thực hiện. 

Áp dụng: Vẽ đồ thị của hàm số \(y = \sqrt 5 x + \sqrt 5 \) bằng compa và thước thẳng.

Hướng dẫn. Tìm điểm trên trục tung có tung độ bằng \(\sqrt 5 \). 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Xác định hai điểm thuộc đồ thị hàm số \(y=ax+b(a \ne 0)\):

   Cho \(x=0 \Rightarrow y=b \Rightarrow A(0; b).\) 

   Cho \(y=0 \Rightarrow x = -\dfrac{b}{a} \Rightarrow B {\left(-\dfrac{b}{a};0 \right)}.\)

Xác định vị trí hai điểm \(A,\ B\) trên mặt phẳng tọa độ. Đường thẳng đi qua \(A,\ B\) là đồ thị hàm số \(y=ax+b.\)

+) Định lí Py-ta-go trong tam giác vuông: Cho tam giác \(ABC\) vuông tại \(A\). Khi đó:

              \(BC^2=AB^2+AC^2\).

Lời giải chi tiết

+ Vẽ đồ thị hàm số: \(y=\sqrt 3 x + \sqrt 3\) 

    Cho \(x= 0 \Rightarrow y = \sqrt 3 . 0 + \sqrt 3 = \sqrt 3 \Rightarrow M(0; \sqrt 3)\).

    Cho \(y=0  \Rightarrow 0 = \sqrt 3 . x + \sqrt 3 \Rightarrow x= -1 \Rightarrow N(-1; 0)\).

Đồ thị hàm số \(y=\sqrt 3 x + \sqrt 3\) là đường thẳng đi qua hai điểm \(M(0; \sqrt 3)\) và \(N(-1; 0)\)

+ Ta đi xác định vị trí điểm \(M(0; \sqrt 3)\) trên trục tung:

Bước \(1\): Xác định điểm \(A(1; 1)\) trên mặt phẳng tọa độ \(Oxy\). Khi đó theo định lí Py-ta-go, ta có:

             \(OA^2=1^2+1^2=2 \Leftrightarrow OA =\sqrt 2\)

Bước \(2\): Dùng compa vẽ cung tròn tâm \(O\) bán kính \(OA =\sqrt 2\). Cung tròn này cắt trục \(Ox\) tại vị trí \(C\) thì hoành độ của \(C\) là \(\sqrt 2\).

Bước \(3\): Xác định điểm \(B( \sqrt 2; 1)\). Khi đó theo định lí Py-ta-go, ta có:

            \(OB^2=(\sqrt 2)^2+1^2=2+1=3 \Leftrightarrow OB =\sqrt 3\)

Bước \(4\): Dùng compa vẽ cung tròn tâm \(O\) bán kính \(OB=\sqrt 3\). Khi đó cung tròn này cắt trục tung tại vị trí điểm có tung độ là \(\sqrt 3\). Ta xác định được điểm \(M(0; \sqrt 3)\).

Bước \(5\): Kẻ đường thẳng đi qua hai điểm \(M\) và \(N\) ta được đồ thị hàm số \(y=\sqrt 3 x + \sqrt 3\).

+ Áp dụng: Vẽ đồ thị hàm số \(y = \sqrt 5 x + \sqrt 5 \) (làm tương tự như trên)

    Cho \(x= 0 \Rightarrow y = \sqrt 5 . 0 + \sqrt 5 = \sqrt 5 \Rightarrow B(0; \sqrt 5)\).

    Cho \(x= -1 \Rightarrow y = \sqrt 5 . (-1) + \sqrt 5 = 0 \Rightarrow C(-1; 0)\).

Đồ thị hàm số \(y=\sqrt 5 x + \sqrt 5\) là đường thẳng đi qua hai điểm \(B(0; \sqrt 5)\) và \(C(-1; 0)\)

Các bước vẽ: 

Bước \(1\): Xác định điểm \(A(2; 1)\) trên mặt phẳng tọa độ \(Oxy\).

           Áp dụng định lí Py-ta-go, ta có:

             \(OA^2=2^2+1^2=4+1=5 \Leftrightarrow OA = \sqrt 5\)

Bước \(2\): Vẽ cung tròn tâm \(O\) bán kính \(OA=\sqrt 5\). Cung tròn này cắt trục \(Oy\) tại vị trí điểm \(B\) có tung độ là \(\sqrt 5\). Ta xác định được điểm \(B(0; \sqrt 5)\).

Bước \(3\): Kẻ đường thẳng đi qua hai điểm \(B(0; \sqrt 5)\) và \(C(-1; 0)\) ta được đồ thị của hàm số \(y = \sqrt 5 x + \sqrt 5 \).

 

Loigiaihay.com


Bình chọn:
4 trên 50 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài