Đề kiểm tra 15 phút - Đề số 4 - Bài 2 - Chương 2 - Hình học 9>
Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 2 - Chương 2 - Hình học 9
Đề bài
Cho đường tròn tâm O, đường kính AB. Từ A và B kẻ hai dây cung AC và BD song song với nhau.
a. Chứng minh : \(AC = BD\).
b. Chứng minh rằng ba điểm C, O, D thẳng hàng.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất hai đường thẳng song song và tính chất hai tam giác bằng nhau.
Lời giải chi tiết
a. Kẻ \(OH ⊥ AC\), vì AC // BD (gt) nên
\(OH ⊥ BD\) tại K
Xét hai tam giác vuông OHA và OKB có:
\({\widehat A_1} = {\widehat B_1}\) (so le trong)
\(OA = OB (=R)\)
Do đó ∆OHA = ∆OKB (cạnh huyền – góc nhọn)
\(⇒ AH = BK ⇒ AC = BD\)
b. Xét ∆OHC và ∆OKD có: \(OH = OK\) (cmt)
\(\widehat {OHC} = \widehat {OKD}\,\left( { = 90^\circ } \right)\)
\(HC = KD\)
Vậy \(∆OHC = ∆OKD\) (c.g.c) \( \Rightarrow \widehat {HOC} = \widehat {KOD}\)
Do đó ba điểm C, O, D thẳng hàng.
Loigiaihay.com
- Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 2 - Bài 2 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 1 - Bài 2 - Chương 2 - Hình học 9
- Bài 11 trang 104 SGK Toán 9 tập 1
>> Xem thêm
Các bài khác cùng chuyên mục