Đề kiểm tra 15 phút - Đề số 2 - Bài 2 - Chương 2 - Hình học 9

Bình chọn:
4.9 trên 7 phiếu

Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 2 - Chương 2 - Hình học 9

Đề bài

Cho đường tròn (O) đường kính \(AB = 2R\). Một dây CD không đi qua tâm O sao cho \(\widehat {COD} = 90^\circ \) và CD cắt đường thẳng AB tại E (D nằm giữa hai điểm E và C), biết \(OE = 2R\). Tính độ dài EC và ED theo R.

Lời giải chi tiết

Ta có: \(\widehat {COD} = 90^\circ \) (gt) nên ∆COD vuông cân tại O, ta có:

\(CD = \sqrt {O{C^2} + O{D^2}}  = \sqrt {2{R^2}}  = R\sqrt 2 \)

Kẻ \(OH ⊥ CD\), ta có: \(HC = HD\) (định lí đường kính dây cung)

Mặt khác ∆COD vuông cân nên OH đồng thời là trung tuyến:

\(HC = HD = OH = {{CD} \over 2} = {{R\sqrt 2 } \over 2}\)

Xét tam giác vuông OHE, ta có:

\(EH = \sqrt {O{E^2} - O{H^2}} \) (định lí Pi-ta-go)

\(\eqalign{  & EH = \sqrt {{{\left( {2R} \right)}^2} - {{\left( {{{R\sqrt 2 } \over 2}} \right)}^2}}  \cr&\;\;\;\;\;\;\;= {{R\sqrt {14} } \over 2}  \cr  &  \Rightarrow ED = EH - HD \cr&\;\;\;\;\;\;\;\;\;\,\;\;= {{R\sqrt {14} } \over 2} - {{R\sqrt 2 } \over 2}\cr& \;\;\;\;\;\;\;\;\;\;\;\,= {{R\sqrt {14}  - R\sqrt 2 } \over 2}  \cr  & EC = EH + HC = {{R\sqrt {14}  + R\sqrt 2 } \over 2} \cr} \)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com