Đề kiểm tra 15 phút - Đề số 2 - Bài 2 - Chương 2 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 2 - Chương 2 - Hình học 9

Đề bài

Cho đường tròn (O) đường kính \(AB = 2R\). Một dây CD không đi qua tâm O sao cho \(\widehat {COD} = 90^\circ \) và CD cắt đường thẳng AB tại E (D nằm giữa hai điểm E và C), biết \(OE = 2R\). Tính độ dài EC và ED theo R.

Phương pháp giải - Xem chi tiết

Sử dụng:

- Định lý Pytago: Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông

- Trong một đường tròn, đường kính vuông góc với một dây thì qua trung điểm của dây ấy.

- Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.

Lời giải chi tiết

Ta có: \(\widehat {COD} = 90^\circ \) (gt) và OC=OD=R nên ∆COD vuông cân tại O, ta có:

\(CD = \sqrt {O{C^2} + O{D^2}}  = \sqrt {2{R^2}}  = R\sqrt 2 \)

Kẻ \(OH ⊥ CD\), ta có: \(HC = HD\) (định lí đường kính dây cung) 

Mặt khác ∆COD vuông cân nên OH đồng thời là trung tuyến:

\(HC = HD = OH = {{CD} \over 2} = {{R\sqrt 2 } \over 2}\)

Xét tam giác vuông OHE, ta có:

\(EH = \sqrt {O{E^2} - O{H^2}} \) (định lí Pi-ta-go)

\(\eqalign{  & EH = \sqrt {{{\left( {2R} \right)}^2} - {{\left( {{{R\sqrt 2 } \over 2}} \right)}^2}}  \cr&\;\;\;\;\;\;\;= {{R\sqrt {14} } \over 2}  \cr  &  \Rightarrow ED = EH - HD \cr&\;\;\;\;\;\;\;\;\;\,\;\;= {{R\sqrt {14} } \over 2} - {{R\sqrt 2 } \over 2}\cr& \;\;\;\;\;\;\;\;\;\;\;\,= {{R\sqrt {14}  - R\sqrt 2 } \over 2}  \cr  & EC = EH + HC = {{R\sqrt {14}  + R\sqrt 2 } \over 2} \cr} \)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài