Bài 44 trang 130 SGK Toán 9 tập 2


Đề bài

Cho hình vuông \(ABCD\) nội tiếp đường tròn tâm \(O\), bán kính \(R\) và \(GEF\) là tam giác đều nội tiếp đường tròn đó, \(EF\) là dây song song với \(AB\) (h.119). Cho hình đó quay quanh trục \(GO\). Chứng minh rằng:

a) Bình phương thể tích của hình trụ sinh ra bởi hình vuông bằng tích của thể tích hình cầu sinh ra bởi hình tròn và thể tích hình nón do tam giác đều sinh ra.

b) Bình phương diện tích toàn phần của hình trụ bằng tích của diện tích hình cầu và diện tích toàn phần của hình nón.


Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Thể tích hình trụ: \(V=\pi r^2 h.\)

+) Thể tích hình nón: \(V = \dfrac{1}{3}\pi {r^2}h.\)

+) Thể tích hình cầu:  \(V = \dfrac{4}{3}\pi {r^3}.\) 

+) Diện tích toàn phần của hình trụ: \({S_{tp}} = 2\pi rh + 2\pi {r^2}.\)

+) Diện tích toàn phần của hình nón: \({S_{tp}} = \pi rl + \pi {r^2}.\) 

Lời giải chi tiết

Khi quay hình vẽ quanh trục \(GO\) ta được:

a) Thể tích hình trụ được tạo bởi hình vuông \(ABCD\) là:

\(\displaystyle V = \pi {\left( {{{AB} \over 2}} \right)^2}.BC\) với \(BC=AB = \sqrt {OA^2+OB^2}=\sqrt {2R^2}=R\sqrt2.\)

\(\eqalign{
& \Rightarrow V = \pi {\left( {{{R\sqrt 2 } \over 2}} \right)^2}.R\sqrt 2 \cr
& = \pi .{{2{{\rm{R}}^2}} \over 4}.R\sqrt 2 = {{\pi {{\rm{R}}^3}\sqrt 2 } \over 2} \cr
& \Rightarrow {V^2} = \left( {{{\pi {R^3}\sqrt 2 } \over 2}} \right)^2 = {{{\pi ^2}{R^6}} \over 2}(1) \cr}\)

Thể tích hình cầu có bán kính \(R\) là: \(\displaystyle {V_1} = {4 \over 3}\pi {R^3}\) 

Thể tích hình nón có bán kính đường tròn đáy bằng \(\displaystyle {{EF} \over 2}\) là:

 \(\displaystyle {V_2} = {1 \over 3}\pi {\left( {{{EF} \over 2}} \right)^2}.GH\)

Với \(EF = R\sqrt3\) (cạnh tam giác đều nội tiếp trong đường tròn \((O;R)\))

và \(\displaystyle GH = {{EF\sqrt 3 } \over 2} = {{R\sqrt {3.} \sqrt 3 } \over 2} = {{3R} \over 2}\) 

Thay vào V2, ta có: \(\displaystyle {V_2} = {1 \over 3}\pi {\left( {{{R\sqrt 3 } \over 2}} \right)^2}.{{3{\rm{R}}} \over 2} = {3 \over 8}\pi {R^3}\) 

Ta có: \(\displaystyle {V_1}{V_2} = {4 \over 3}\pi {R^3}.{3 \over 8}\pi {R^3} = {{{\pi ^2}{R^6}} \over 2}(2)\)

So sánh (1) và (2) ta được : \({V^2} = {V_1}.{V_2}\)

b) Diện tích toàn phần của hình trụ có bán kính \(\displaystyle {{AB} \over 2}\) là: 

\(\eqalign{
& S = 2\pi \left( {{{AB} \over 2}} \right).BC + 2\pi {\left( {{{AB} \over 2}} \right)^2} \cr
& S = 2\pi .{{R\sqrt 2 } \over 2}R\sqrt 2 + 2\pi {\left( {{{R\sqrt 2 } \over 2}} \right)^2} \cr
& S = 2\pi {R^2} + \pi {R^2} = 3\pi {R^2} \cr
& \Rightarrow {S^2} = {\left( {3\pi {R^2}} \right)^2} = 9{\pi ^2}.{R^4}(1) \cr} \) 

Diện tích mặt cầu có bán kính \(R\) là: \({S_1} = {\rm{ }}4\pi {R^2}\) (2)

Diện tích toàn phần của hình nón là: 

\(\displaystyle {S_2} = \pi {{EF} \over 2}.FG + \pi {\left( {{{EF} \over 2}} \right)^2}\)

\(\displaystyle = \pi {{R\sqrt 3 } \over 2}.R\sqrt 3  + \pi {\left( {{{R\sqrt 3 } \over 2}} \right)^2} = {{9\pi {R^2}} \over 4}\) 

Ta có: \(\displaystyle {S_1}{S_2} = 4\pi {R^2}.{{9\pi {R^2}} \over 4} = 9{\pi ^2}{R^4}(2)\)

So sánh (1) và (2) ta có: \({S^2} = {\rm{ }}{S_1}.{\rm{ }}{S_2}\)

Loigiaihay.com


Bình chọn:
3.6 trên 7 phiếu
  • Bài 45 trang 131 SGK Toán 9 tập 2

    Giải bài 45 trang 131 SGK Toán 9 tập 2. Hình 120 mô tả một hình cầu được đặt khít vào trong một hình trụ, các kích thước cho trên hình vẽ.Hãy tính:

  • Bài 43 trang 130 SGK Toán 9 tập 2

    Giải bài 43 trang 130 SGK Toán 9 tập 2 . Hãy tính thể tích các hình dưới đây theo kích thước đã cho (h.118) (đơn vị : cm).

  • Bài 42 trang 130 SGK Toán 9 tập 2

    Giải bài 42 trang 130 SGK Toán 9 tập 2 . Hãy tính thể tích các hình dưới đây theo kích thước đã cho (h.117).

  • Bài 41 trang 129 SGK Toán 9 tập 2

    Giải bài 41 trang 129 SGK Toán 9 tập 2 . a) Chứng minh AOC và BDO là hai tam giác đồng dạng; từ đó suy ra tích AC.BD không đổi.

  • Bài 40 trang 129 SGK Toán 9 tập 2

    Giải bài 40 trang 129 SGK Toán 9 tập 2 . Hãy tính diện tích toàn phần của các hình tương ứng theo các kích thước đã cho trên hình 115.

  • Bài 39 trang 129 SGK Toán 9 tập 2

    Giải bài 39 trang 129 SGK Toán 9 tập 2 . Một hình chữ nhật ABCD có AB > AD, diện tích và chu vi của nó theo thứ tự là 2a2 và 6a.

  • Bài 38 trang 129 SGK Toán 9 tập 2

    Giải bài 38 trang 129 SGK Toán 9 tập 2 . Hãy tính thể tích , diện tích bề mặt một chi tiết máy theo kích thước đã cho trên hình 114.

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.