Bài 38 trang 129 SGK Toán 9 tập 2

Bình chọn:
2.5 trên 8 phiếu

Giải bài 38 trang 129 SGK Toán 9 tập 2 . Hãy tính thể tích , diện tích bề mặt một chi tiết máy theo kích thước đã cho trên hình 114.

Đề bài

Hãy tính thể tích , diện tích bề mặt một chi tiết máy theo kích thước đã cho trên hình 114. 

Phương pháp giải - Xem chi tiết

+) Diện tích xung quanh của hình trụ: \(S_{xq}=2\pi rh.\)

+) Diện tích toàn phần của hình trụ: \(S_{tp}=2 \pi rh +2 \pi r^2.\)

+) Thể tích hình trụ là: \(V=\pi r^2h.\) 

Lời giải chi tiết

* Ta có: Thể tích phần cần tính là tổng thể tích của hai hình trụ có đường kính là \(11cm\) và chiều cao là \(2cm\).

\(\displaystyle {V_1} = \pi {R^2}{h_1} = \pi {\left( {{{11} \over 2}} \right)^2}.2 = 60,5\pi \left( {c{m^3}} \right)\)  

Thể tích hình trụ có đường kính đáy là \(6cm\), chiều cao là \(7cm\)

\(\displaystyle {V_2} = \pi {R^2}{h_2} = \pi {\left( {{6 \over 2}} \right)^2}.7 = 63\pi \left( {c{m^3}} \right)\) 

Vậy thể tích của chi tiết máy cần tính là:

\(V = {V_1} + {V_2} = 60,5\pi  + 63\pi  = 123,5\pi (c{m^3})\)

* Tương tự, theo đề bài diện tích bề mặt của chi tiết máy bằng tổng diện tích xung quanh của hai chi tiết máy với diện tích 2 hình tròn đáy của hình trụ nằm trên.

Diện tích toàn phần của hình trụ có đường kính đáy \(11 cm\), chiều cao là \(2cm\) và là: 

\({S_{tp(1)}} = 2\pi R_1{h_1} + 2\pi {R_1}^2 \)

\(\displaystyle = 2\pi {{11} \over 2}.2 + 2\pi .5,5^2 = 82,5 \pi \left( {c{m^2}} \right)\)

Diện tích xung quanh của hình trụ có đường kính đáy là \(6cm\) và chiều cao là \(7cm\) là:

\(\displaystyle {S_{xq(2)}} = 2\pi R_2 {h_2} = 2\pi {6 \over 2}.7 = 42\pi \left( {c{m^2}} \right)\) 

Vậy diện tích bề mặt của chi tiết máy là:

\(S = {S_{tp(1)}} + {\rm{ }}{S_{xq(2)}} = 82,5\pi  + 42\pi  = 124,5\pi (c{m^2}).\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com