Bài 39 trang 129 SGK Toán 9 tập 2

Bình chọn:
3.6 trên 5 phiếu

Giải bài 39 trang 129 SGK Toán 9 tập 2 . Một hình chữ nhật ABCD có AB > AD, diện tích và chu vi của nó theo thứ tự là 2a2 và 6a.

Đề bài

Một hình chữ nhật \(ABCD\) có \(AB > AD\), diện tích và chu vi của nó theo thứ tự là \(2a^2\) và \(6a\). Cho hình vẽ quay xung quanh cạnh \(AB\), ta được một hình trụ.

Tính diện tích xung quanh và thể tích của hình trụ này

Phương pháp giải - Xem chi tiết

+) Quay hình chữ nhật quanh một cạnh cố định của nó ta được một hình trụ.

+) Chu vi hình chữ nhật có kích thước \(a, \, b\) là: \(C=2(a+b).\)

+) Diện tích hình chữ nhật có kích thước \(a, \, b\) là: \(S=ab.\)

+) Diện tích xung quanh của hình trụ: \(S_{xq}=2\pi rh.\)

+) Thể tích hình trụ là: \(V=\pi r^2h.\) 

Lời giải chi tiết


Theo đề bài ta có: 

Diện tích hình chữ nhật \(ABCD\) là: \(AB.AD = 2a^2\) (1)

Chu vi hình chữ nhật  là: \(2(AB + CD) = 6a ⇒ AB + CD = 3a\) (2)

Từ (1) và (2), ta có \(AB\) và \(CD\) là nghiệm của phương trình:

\({x^2}-{\rm{ }}3ax{\rm{ }}-{\rm{ }}2{a^2} = {\rm{ }}0\)

Giải phương trình ta được: \({x_1} = {\rm{ }}2a;{\rm{ }}{x_2} = {\rm{ }}a\)

Theo giả thiết \(AB > AD\) nên ta chọn \(AB = 2a; AD = a\)

Khi quay hình chữ nhật quanh \(AB\) ta được hình trụ có \(h=AB=2a\) và \(r=AD=a.\)

Vậy diện tích xung quanh hình trụ là:

\({S_{xq}} = 2\pi .AD.AB = 2\pi .a.2a = 4{\rm{ }}\pi {a^2}\)

Thể tích hình trụ là:

\(V{\rm{ }} = {\rm{ }}\pi {\rm{ }}.{\rm{ }}A{D^2}.{\rm{ }}AB{\rm{ }} = {\rm{ }}\pi .{\rm{ }}{a^2}.{\rm{ }}2a{\rm{ }} = {\rm{ }}2\pi {a^3}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com