Bài 33 trang 61 SGK Toán 9 tập 1


Giải bài 33 trang 61 SGK Toán 9 tập 1. Với những giá trị nào của m thì đồ thị các hàm số y = 2x + (3 + m) và y = 3x + (5 – m) cắt nhau tại một điểm trên trục tung?

Đề bài

Với những giá trị nào của m thì đồ thị các hàm số \(y = 2x + (3 + m)\) và \(y = 3x + (5 – m)\) cắt nhau tại một điểm trên trục tung?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Hai đồ thị hàm số \(y = ax + b\) và \(y = a'x + b'\) cắt nhau tại 1 điểm trên trục tung nếu \(\left\{ \begin{array}{l}a \ne a'\\b = b'\end{array} \right.\). 

Lời giải chi tiết

Hàm số \(y = 2x + \left( {3 + m} \right)\) có \(a = 2\) và \(b = 3 + m\)

Hàm số \(y = 3x + \left( {5 - m} \right)\) có \(a' = 3\) và \(b' = 5 - m\) 

Hai đồ thị hàm số \(y = 2x + \left( {3 + m} \right)\) và \(y = 3x + \left( {5 - m} \right)\) cắt nhau tại 1 điểm trên trục tung khi \(\left\{ \begin{array}{l}a \ne a'\\b = b'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 \ne 3\left( {luôn\,\,đúng} \right)\\3 + m = 5 - m\end{array} \right. \\\Rightarrow 2m = 2 \Leftrightarrow m = 1\)

Vậy \(m = 1\) thì hai đồ thị hàm số cắt nhau tại 1 điểm trên trục tung.

Cách khác:

Đồ thị hai hàm số \(y = 2x + (3 + m)\) và \(y = 3x + (5 – m)\) cắt nhau tại một điểm trên trục tung nên giao điểm của hai đồ thị hàm số có hoành độ \(x=0\)

+ Ta thay hoành độ \(x = 0\) vào hàm số \(y = 2x + (3 + m)\) ta được tung độ: \(y = 3 + m\)

+ Ta thay hoành độ \(x = 0\) vào hàm số \(y = 3x + (5 – m)\) ta được tung độ: \(y = 5 – m\)

Vì cùng là tung độ của giao điểm nên:

   \( 3 + m = 5 – m \Rightarrow m = 1\)

Vậy khi \(m = 1\) thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung.

(Lưu ý: Điểm trên trục tung có hoành độ là 0)

Loigiaihay.com


Bình chọn:
4.4 trên 35 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài