Lý thuyết về căn bậc ba.


Từ các tính chất trên, ta cũng có các quy tắc đưa thừa số vào trong, ra ngoài dấu căn bậc ba, quy tắc khử mẫu của biểu thức lấy căn bậc ba và quy tắc trục căn bậc ba ở mẫu:

1. Định nghĩa 

+ Căn bậc ba của một số a là số x sao cho \(x^3=a\)

+ Căn bậc ba của số a được kí hiệu là \(\root 3 \of a \)

Như vậy \({\left( {\root 3 \of a } \right)^3} = a\)

Mọi số thực đều có căn bậc ba.

2. Các tính chất

a) \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)

b) \(\root 3 \of {ab}  = \root 3 \of a .\root 3 \of b \)

c) Với b ≠ 0, ta có \(\displaystyle \root 3 \of {{a \over b}}  = {{\root 3 \of a } \over {\root 3 \of b }}\)

3. Áp dụng 

Từ các tính chất trên, ta cũng có các quy tắc đưa thừa số vào trong, ra ngoài dấu căn bậc ba, quy tắc khử mẫu của biểu thức lấy căn bậc ba và quy tắc trục căn bậc ba ở mẫu:

a) \(a\root 3 \of b  = \root 3 \of {{a^3}b} \)

b) \(\displaystyle \root 3 \of {{a \over b}}  = {{\root 3 \of {a{b^2}} } \over b}\)

c) Áp dụng hằng đẳng thức \(\left( {A \pm B} \right)\left( {{A^2} \mp  AB + {B^2}} \right) = {A^3} \pm {B^3}\), ta có:

\(\eqalign{
& \left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^3}} } \right) \cr
& = {\left( {\root 3 \of a } \right)^3} \pm {\left( {\root 3 \of b } \right)^3} = a \pm b \cr} \)

 Do đó

\(\eqalign{
& {M \over {\root 3 \of a \pm \root 3 \of b }} \cr
& = {{M\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {\left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)}} \cr
& = {{M\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {a \pm b}} \cr} \)

4. Các dạng toán cơ bản

Dạng 1: Tính giá trị biểu thức 

Sử dụng: \({\left( {\sqrt[3]{a}} \right)^3} = \sqrt[3]{{{a^3}}} = a\) 

Ví dụ: \(\sqrt[3]{{64}} = \sqrt[3]{{{4^3}}} = 4\)

Dạng 2: So sánh các căn bậc ba

Sử dụng: \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)

Ví dụ: So sánh 3 và \(\sqrt[3]{{26}}\)

Ta có: \(3 = \sqrt[3]{{27}}\) mà \(26<27\) nên \(\sqrt[3]{{26}} < \sqrt[3]{{27}} \Leftrightarrow \sqrt[3]{{26}} < 3\)

Dạng 3: Giải phương trình chứa căn bậc ba

Sử dụng: \(\sqrt[3]{A} = B \Leftrightarrow A = {B^3}\)

Ví dụ: 

\(\begin{array}{l}
\sqrt[3]{{x - 1}} = 2\\
\Leftrightarrow x - 1 = {2^3}\\
\Leftrightarrow x - 1 = 8\\
\Leftrightarrow x = 9
\end{array}\)

 Loigiaihay.com


Bình chọn:
4.3 trên 40 phiếu

Các bài liên quan: - Bài 9. Căn bậc ba

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài