Bài 9 trang 80 SBT toán 8 tập 1


Giải bài 9 trang 80 sách bài tập toán 8. Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn tổng hai cạnh đối.

Đề bài

Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn tổng hai cạnh đối.

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức: Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại.

Lời giải chi tiết

Gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD.\)

Trong  \(∆OAB,\) ta có:

\(OA + OB > AB\) (bất đẳng thức tam giác) \((1)\)  

Trong \(∆OCD,\) ta có:

\(OC + OD > CD\) (bất đẳng thức tam giác) \((2)\)

Cộng từng vế \((1)\) và \((2):\)

\(OA + OB + OC + OD > AB + CD\)

\(⇒ AC + BD > AB + CD\)

Loigiaihay.com


Bình chọn:
4.7 trên 17 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí