Bài 10 trang 80 SBT toán 8 tập 1
Giải bài 10 trang 80 sách bài tập toán 8. Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.
Đề bài
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức: Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại.
Lời giải chi tiết
Đặt độ dài AB=a, BC=b, CD=c, AD=d
Gọi O là giao điểm hai đường chéo AC và BD
Trong ∆OAB, ta có:
OA+OB>a (bất đẳng thức tam giác)(1)
Trong ∆OCD ta có:
OC+OD>c (bất đẳng thức tam giác)(2)
Từ (1) và (2) suy ra:
OA+OB+OC+OD>a+c
Hay AC+BD>a+c(∗)
Trong ∆OAD ta có: OA+OD>d (bất đẳng thức tam giác) (3)
Trong ∆OBC ta có: OB+OC>b (bất đẳng thức tam giác) (4)
Từ (3) và (4) suy ra: OA+OD+OB+OC>b+d
⇒AC+BD>b+d(∗∗)
Từ (∗) và (∗∗) suy ra: 2(AC+BD)>a+b+c+d
⇒AC+BD>a+b+c+d2
Trong ∆ABC ta có: AC<AB+BC=a+b (bất đẳng thức tam giác)
Trong ∆ADC ta có: AC<AD+DC=c+d (bất đẳng thức tam giác)
Suy ra: 2AC<a+b+c+d
AC<a+b+c+d2 (5)
Trong ∆ABD ta có: BD<AB+AD=a+d (bất đẳng thức tam giác)
Trong ∆BCD ta có: BD<BC+CD=b+c (bất đẳng thức tam giác)
Suy ra: 2BD<a+b+c+d
BD<a+b+c+d2 (6)
Từ (5) và (6) suy ra: AC+BD<a+b+c+d
Vậy a+b+c+d2
Loigiaihay.com


- Bài 1.1 phần bài tập bổ sung trang 81 SBT toán lớp 8 tập 1
- Bài 1.2 phần bài tập bổ sung trang 81 SBT toán lớp 8 tập 1
- Bài 1.3 phần bài tập bổ sung trang SBT toán lớp 8 tập 1
- Bài 9 trang 80 SBT toán 8 tập 1
- Bài 8 trang 80 SBT toán 8 tập 1
>> Xem thêm