Bài 2 trang 80 SBT toán 8 tập 1


Giải bài 2 trang 80 sách bài tập toán 8. Tứ giác ABCD có AB=BC, CD=DA.a) Chứng minh rằng BD là đường trung trực của AC ...

Đề bài

Tứ giác \(ABCD\) có \(AB=BC, CD=DA.\)

\(a)\) Chứng minh rằng \(BD\) là đường trung trực của \(AC\)

\(b)\) Cho biết \(\widehat B = {100^0},\widehat D = {70^0}\) tính \(\widehat A\) và  \(\widehat C\).

Phương pháp giải - Xem chi tiết

\(a)\) Sử dụng tính chất đường trung trực của đoạn thẳng.

\(b)\) Tổng bốn góc của một tứ giác bằng \(360^o.\)

Lời giải chi tiết

\(a)\) Ta có: \(BA=BC\) (gt)

\(\Rightarrow \) điểm \(B\) thuộc đường trung trực của \( AC\)

Lại có: \(DA=DC\) (gt)

\(\Rightarrow\) điểm \(D\) thuộc đường trung trực của \(AC\)

\(B\) và \(D\) là hai điểm phân biệt cùng thuộc đường trung trực của \(AC\) nên đường thẳng \(BD\) là đường trung trực của \(AC.\)

\(b)\) Xét \( ∆ BAD\) và \(∆ BCD,\) ta có:

       \(BA = BC\) (gt)

       \(DA = DC\) (gt)

       \(BD\) cạnh chung

Do đó \(∆ BAD =∆ BCD (c.c.c)\)  \(\Rightarrow \widehat {BAD} = \widehat {BCD}\) (hai góc tương ứng)

Ta có: \( \widehat {BAD} + \widehat {BCD} + \widehat {ABC} + \widehat {ADC}\)\( = {360^0} \) (tổng 4 góc trong tứ giác)
 \(\Rightarrow \widehat {BAD} + \widehat {BCD}\)\( = {360^0} - \left( {\widehat {ABC} + \widehat {ADC}} \right)\)

\(\Rightarrow \widehat {BAD} + \widehat {BAD}\)\(= {360^0} - \left( {{{100}^0} + {{70}^0}} \right) \)

\(\Rightarrow 2\widehat {BAD} = {190^0} \)

 \(\Rightarrow \widehat {BAD} = {190^0}:2 = {95^0}\)
 \(\Rightarrow \widehat {BCD} = \widehat {BAD} = {95^0}\)

Loigiaihay.com


Bình chọn:
4.6 trên 37 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí