Bài 67 trang 42 SBT toán 8 tập 1


Giải bài 67 trang 42 sách bài tập toán 8. Rút gọn rồi tìm giá trị của x để biểu thức...

Lựa chọn câu để xem lời giải nhanh hơn

Chú ý rằng vì \({\left( {x + a} \right)^2} \ge 0\) với mọi giá trị của \(x\) và \({\left( {x + a} \right)^2} = 0\) khi \(x =  - a\) nên \({\left( {x + a} \right)^2} + b \ge b\) với mọi giá trị của \(x\) và \({\left( {x + a} \right)^2} + b = b\) khi \(x =  - a\). Do đó giá trị nhỏ nhất của \({\left( {x + a} \right)^2} + b\) bằng \(b\) khi \(x =  - a\). Áp dụng điều này giải các bài tập sau:

LG a

Rút gọn rồi tìm giá trị của \(x\) để biểu thức \(\displaystyle {{{x^2}} \over {x - 2}}.\left( {{{{x^2} + 4} \over x} - 4} \right) + 3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.

Phương pháp giải:

- Thực hiện các phép tính theo đúng quy tắc để rút gọn biểu thức.

- Vận dụng kiến thức đã cho ở đầu bài và chứng minh. 

Lời giải chi tiết:

\(\displaystyle {{{x^2}} \over {x - 2}}.\left( {{{{x^2} + 4} \over x} - 4} \right) + 3\) (điều kiện \(x \ne 2\) và \(x \ne 0\) ) 

\(\displaystyle = {{{x^2}} \over {x - 2}}.{{{x^2} + 4 - 4x} \over x} + 3\)

\(\displaystyle = {{{x^2}} \over {x - 2}}.{{{{\left( {x - 2} \right)}^2}} \over x} + 3\)

\( = x\left( {x - 2} \right) + 3\)

\(= {x^2} - 2x +3\)

\(= {x^2} - 2x + 1 + 2\)

\(= {\left( {x - 1} \right)^2} + 2 \)

Ta có: \({\left( {x - 1} \right)^2} \ge 0\) \( \Rightarrow {\left( {x - 1} \right)^2} + 2 \ge 2\) với mọi giá trị của \(x\)

Nên giá trị nhỏ nhất của biểu thức bằng \(2\) khi \(x = 1\).

Mà \(x = 1\) thỏa mãn điều kiện.

Vậy biểu thức đã cho có giá trị nhỏ nhất bằng \(2\) tại \(x = 1\).

LG b

Rút gọn rồi tìm giá trị của \(x\) để biểu thức \(\displaystyle {{{{\left( {x + 2} \right)}^2}} \over x}.\left( {1 - {{{x^2}} \over {x + 2}}} \right) \)\(-\displaystyle  {{{x^2} + 6x + 4} \over x}\) có giá trị lớn nhất. Tìm giá trị lớn nhất ấy.

Phương pháp giải:

- Thực hiện các phép tính theo đúng quy tắc để rút gọn biểu thức.

- Vận dụng kiến thức đã cho ở đầu bài và chứng minh. 

Lời giải chi tiết:

\(\displaystyle {{{{\left( {x + 2} \right)}^2}} \over x}.\left( {1 - {{{x^2}} \over {x + 2}}} \right) \)\(-\displaystyle  {{{x^2} + 6x + 4} \over x}\) (điều kiện \(x \ne 0\) và \(x \ne  - 2\))

\(\displaystyle = {{{{\left( {x + 2} \right)}^2}} \over x}.{{x + 2 - {x^2}} \over {x + 2}} \)\(-\displaystyle  {{{x^2} + 6x + 4} \over x}\)

\(\displaystyle = {{\left( {x + 2} \right)\left( {x + 2 - {x^2}} \right)} \over x} \)\(-\displaystyle  {{{x^2} + 6x + 4} \over x}\)

\(\displaystyle  = {{{x^2} + 2x - {x^3} + 2x + 4 - 2{x^2} - {x^2} - 6x - 4} \over x}\)

\(\displaystyle = {{ - {x^3} - 2{x^2} - 2x} \over x}\)

\(\displaystyle  = {{ - x\left( {{x^2} + 2x + 2} \right)} \over x}\) 

\(=  - \left( {{x^2} + 2x + 2} \right)\)

\(=  - \left[ {\left( {{x^2} + 2x + 1} \right) + 1} \right]\)

\(=  - \left[ {{{\left( {x + 1} \right)}^2} + 1} \right]\)

\(=  - {\left( {x + 1} \right)^2} - 1\)

Vì \({\left( {x + 1} \right)^2} \ge 0\) \( \Rightarrow  - {\left( {x + 1} \right)^2} \le 0\) \( \Rightarrow  - {\left( {x + 1} \right)^2} - 1 \le  - 1 \)

Nên biểu thức có giá trị lớn nhất bằng \(– 1\) khi \(x = - 1\).

Mà \(x = - 1\) thỏa mãn điều kiện.

Vậy biểu thức đã cho có giá trị lớn nhất bằng \(– 1\) tại \(x = - 1 \).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài