Bài 65 trang 41 SBT toán 8 tập 1


Giải bài 65 trang 41 sách bài tập toán 8. Chứng minh rằng : a. Giá trị của biểu thức ...

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng:

LG a

Giá trị của biểu thức \(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)} \right]\) bằng \(1\) với mọi giá trị \(x ≠ 0\) và \(x ≠ -1\)

Phương pháp giải:

Thực hiện các phép tính với phân thức để chứng minh khẳng định đã cho.

Lời giải chi tiết:

\(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)} \right]\)

Biểu thức \(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\) xác định khi \(x \ne 0\)

Biểu thức \(\displaystyle {{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)\) xác định khi \(x \ne 0\) và \(x + 1 \ne 0\) hay xác định khi \(x \ne 0\) và \(x \ne  - 1\)

Vậy với điều kiện \(x \ne 0\) và \(x \ne -1\)

Ta có : \(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)} \right]\)

\(\displaystyle   = {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}.{{1 + x} \over x}} \right]  \)\(\displaystyle   = {\left( {{{x + 1} \over x}} \right)^2}:\left( {{{{x^2} + 1} \over {{x^2}}} + {2 \over x}} \right)\)\(\displaystyle  = {\left( {{{x + 1} \over x}} \right)^2}:{{{x^2} + 1 + 2x} \over {{x^2}}}  \)\(\displaystyle  = {\left( {{{x + 1} \over x}} \right)^2}:{{{{\left( {x + 1} \right)}^2}} \over {{x^2}}}\)\(\displaystyle  = {{{{\left( {x + 1} \right)}^2}} \over {{x^2}}}.{{{x^2}} \over {{{\left( {x + 1} \right)}^2}}} = 1 \)

Vậy giá trị của biểu thức \(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)} \right]\) bằng \(1\) với mọi giá trị \(x ≠ 0\) và \(x ≠ -1\)

LG b

Giá trị của biểu thức \(\displaystyle {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left( {{{x + 3} \over {{x^2} - 3x}} - {x \over {{x^2} - 9}}} \right)\) bằng \(1\) khi \(x \ne 0,\)\(x \ne  - 3,\)\(x \ne 3,\)\(x \ne  - {3 \over 2}\)

Phương pháp giải:

Thực hiện các phép tính với phân thức để chứng minh khẳng định đã cho.

Lời giải chi tiết:

Biểu thức : \(\displaystyle {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left( {{{x + 3} \over {{x^2} - 3x}} - {x \over {{x^2} - 9}}} \right)\) xác định khi \(x - 3 \ne 0,\) \(2x + 3 \ne 0,\) \({x^2} - 3x \ne 0\) và \({x^2} - 9 \ne 0\) hay \(x \ne 3;\)\(x \ne \displaystyle  - {3 \over 2};\) \(x \ne 0;\) \(x \ne 3\) và \(x \ne  \pm 3\)

Vậy điều kiện \(x \ne 0,\) \(x \ne 3,\) \(x \ne  - 3\) và \(x \ne \displaystyle  - {3 \over 2}\)

Ta có: \(\displaystyle {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left( {{{x + 3} \over {{x^2} - 3x}} - {x \over {{x^2} - 9}}} \right)\)

\(\displaystyle   = {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left[ {{{x + 3} \over {x\left( {x - 3} \right)}} - {x \over {\left( {x + 3} \right)\left( {x - 3} \right)}}} \right]  \)\(\displaystyle  = {x \over {x - 3}} - {{x\left( {x + 3} \right)} \over {2x + 3}}\)\(.\displaystyle {{{{\left( {x + 3} \right)}^2} - {x^2}} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}}  \)\(\displaystyle  = {x \over {x - 3}} - {{{x^2} + 6x + 9 - {x^2}} \over {\left( {2x + 3} \right)\left( {x - 3} \right)}}\)\(\displaystyle  = {x \over {x - 3}} - {{3\left( {2x + 3} \right)} \over {\left( {2x + 3} \right)\left( {x - 3} \right)}}  \)\(\displaystyle   = {x \over {x - 3}} - {3 \over {x - 3}} = {{x - 3} \over {x - 3}} = 1 \)

Vậy giá trị của biểu thức \(\displaystyle {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left( {{{x + 3} \over {{x^2} - 3x}} - {x \over {{x^2} - 9}}} \right)\) bằng \(1\) khi \(x \ne 0,\)\(x \ne  - 3,\)\(x \ne 3,\)\(x \ne  - {3 \over 2}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài