Bài 62 trang 40 SBT toán 8 tập 1>
Giải bài 62 trang 40 sách bài tập toán 8. Đối với mỗi biểu thức sau, hãy tìm điều kiện của x để giá trị của biểu thức được xác định :
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đối với mỗi biểu thức sau, hãy tìm điều kiện của \(x\) để giá trị của biểu thức được xác định:
LG a
\(\displaystyle {{2x - 3} \over {\displaystyle {{x - 1} \over {x + 2}}}}\)
Phương pháp giải:
Tìm điều kiện của \(x\) để giá trị tương ứng của mẫu thức khác \(0\).
Lời giải chi tiết:
\(\displaystyle {{2x - 3} \over {\displaystyle {{x - 1} \over {x + 2}}}}\)
Biểu thức xác định khi \(x – 1 ≠ 0\) và \(x + 2 ≠ 0\)
\(\Rightarrow x ≠ 1\) và \(x ≠ -2\).
Vậy điều kiện để biểu thức xác định là \(x ≠ 1\) và \(x ≠ - 2\).
LG b
\(\displaystyle {\displaystyle {{{2{x^2} + 1} \over x}} \over {x - 1}}\)
Phương pháp giải:
Tìm điều kiện của \(x\) để giá trị tương ứng của mẫu thức khác \(0\).
Lời giải chi tiết:
\(\displaystyle {\displaystyle {{{2{x^2} + 1} \over x}} \over {x - 1}}\)
Biểu thức xác định khi \(x≠0\) và \(x – 1 ≠ 0\)
\(\Rightarrow x ≠ 0\) và \(x ≠ 1\).
Vậy điều kiện để biểu thức xác định là \(x ≠ 0\) và \(x ≠ 1\).
LG c
\(\displaystyle {{{x^2} - 25} \over {\displaystyle {{{x^2} - 10x + 25} \over x}}}\)
Phương pháp giải:
Tìm điều kiện của \(x\) để giá trị tương ứng của mẫu thức khác \(0\).
Lời giải chi tiết:
\(\displaystyle {{{x^2} - 25} \over {\displaystyle {{{x^2} - 10x + 25} \over x}}}\)
Biểu thức xác định khi \({x^2} - 10x + 25 \ne 0\) và \(x ≠ 0\)
Với \({x^2} - 10x + 25 \ne 0 \Rightarrow {\left( {x - 5} \right)^2} \ne 0\)\( \Rightarrow x \ne 5\)
Vậy điều kiện để biểu thức xác định là \(x ≠ 0\) và \(x ≠ 5\)
LG d
\(\displaystyle {{{x^2} - 25} \over {\displaystyle {{{x^2} + 10x + 25} \over {x - 5}}}}\)
Phương pháp giải:
Tìm điều kiện của \(x\) để giá trị tương ứng của mẫu thức khác \(0\).
Lời giải chi tiết:
\(\displaystyle {{{x^2} - 25} \over {\displaystyle {{{x^2} + 10x + 25} \over {x - 5}}}}\)
Biểu thức xác định khi \({x^2} + 10x + 25 \ne 0\) và \(x – 5 ≠ 0.\)
Với \( {x^2} + 10x + 25 \ne 0\)\( \Rightarrow {\left( {x + 5} \right)^2} \ne 0\)\( \Rightarrow x \ne - 5 \)
Với \(x – 5 ≠ 0\)\( \Rightarrow x \ne 5 \)
Vậy điều kiện để biểu thức xác định \(x ≠ 5\) và \(x ≠ -5\).
Loigiaihay.com


- Bài 63 trang 40 SBT toán 8 tập 1
- Bài 64 trang 41 SBT toán 8 tập 1
- Bài 65 trang 41 SBT toán 8 tập 1
- Bài 66 trang 41 SBT toán 8 tập 1
- Bài 67 trang 42 SBT toán 8 tập 1
>> Xem thêm