Bài 58 trang 39 SBT toán 8 tập 1


Giải bài 58 trang 39 sách bài tập toán 8. Thực hiện các phép tính...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Thực hiện các phép tính:

LG a

\(\displaystyle \left( {{9 \over {{x^3} - 9x}} + {1 \over {x + 3}}} \right)\)\(:\displaystyle \left( {{{x - 3} \over {{x^2} + 3x}} - {x \over {3x + 9}}} \right)\)

Phương pháp giải:

Vận dụng kiến thức về quy tắc thực hiện các phép tính cộng, trừ, nhân, chia phân thức.

Lời giải chi tiết:

\(\displaystyle \left( {{9 \over {{x^3} - 9x}} + {1 \over {x + 3}}} \right)\)\(:\displaystyle \left( {{{x - 3} \over {{x^2} + 3x}} - {x \over {3x + 9}}} \right)\)

\(\displaystyle  = \left[ {{9 \over {x\left( {x + 3} \right)\left( {x - 3} \right)}} + {1 \over {x + 3}}} \right]\)\(:\displaystyle \left[ {{{x - 3} \over {x\left( {x + 3} \right)}} - {x \over {3\left( {x + 3} \right)}}} \right]  \)\(\displaystyle   = {{9 + x\left( {x - 3} \right)} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}}:{{3\left( {x - 3} \right) - {x^2}} \over {3x\left( {x + 3} \right)}}\)\(\displaystyle  = {{{x^2} - 3x + 9} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}}.{{3x\left( {x + 3} \right)} \over {3x - 9 - {x^2}}}  \)\(\displaystyle   = {{3\left( {{x^2} - 3x + 9} \right)} \over {\left( {3 - x} \right)\left( {{x^2} - 3x + 9} \right)}} = {3 \over {3 - x}} \)

LG b

\(\displaystyle \left( {{2 \over {x - 2}} - {2 \over {x + 2}}} \right).{{{x^2} + 4x + 4} \over 8}\)

Phương pháp giải:

Vận dụng kiến thức về quy tắc thực hiện các phép tính cộng, trừ, nhân, chia phân thức.

Lời giải chi tiết:

\(\displaystyle \left( {{2 \over {x - 2}} - {2 \over {x + 2}}} \right).{{{x^2} + 4x + 4} \over 8}\)\(\displaystyle  = {{2\left( {x + 2} \right) - 2\left( {x - 2} \right)} \over {\left( {x - 2} \right)\left( {x + 2} \right)}}.{{{{\left( {x + 2} \right)}^2}} \over 8}\)

\( \displaystyle = {{2x + 4 - 2x + 4} \over {\left( {x - 2} \right)\left( {x + 2} \right)}}.{{{{\left( {x + 2} \right)}^2}} \over 8}\)\(\displaystyle  = {8 \over {\left( {x - 2} \right)\left( {x + 2} \right)}}.{{{{\left( {x + 2} \right)}^2}} \over 8}\)\(\displaystyle  = {{x + 2} \over {x - 2}}\)

LG c

\(\displaystyle \left( {{{3x} \over {1 - 3x}} + {{2x} \over {3x + 1}}} \right)\)\(:\displaystyle {{6{x^2} + 10x} \over {1 - 6x + 9{x^2}}}\)

Phương pháp giải:

Vận dụng kiến thức về quy tắc thực hiện các phép tính cộng, trừ, nhân, chia phân thức.

Lời giải chi tiết:

\(\displaystyle \left( {{{3x} \over {1 - 3x}} + {{2x} \over {3x + 1}}} \right)\)\(:\displaystyle {{6{x^2} + 10x} \over {1 - 6x + 9{x^2}}}\)\(\displaystyle  = {{3x\left( {3x + 1} \right) + 2x\left( {1 - 3x} \right)} \over {\left( {1 - 3x} \right)\left( {1 + 3x} \right)}}\)\(:\displaystyle {{2x\left( {3x + 5} \right)} \over {{{\left( {1 - 3x} \right)}^2}}}\)

\( \displaystyle  = {{9{x^2} + 3x + 2x - 6{x^2}} \over {\left( {1 - 3x} \right)\left( {1 + 3x} \right)}}.{{{{\left( {1 - 3x} \right)}^2}} \over {2x\left( {3x + 5} \right)}}\)

\( = \dfrac{{3{x^2} + 5x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}}.\dfrac{{{{\left( {1 - 3x} \right)}^2}}}{{2x\left( {3x + 5} \right)}}\)

\(\displaystyle  = {{x\left( {3x + 5} \right)} \over {\left( {1 - 3x} \right)\left( {1 + 3x} \right)}}.{{{{\left( {1 - 3x} \right)}^2}} \over {2x\left( {3x + 5} \right)}} \)\( \displaystyle  = {{1 - 3x} \over {2\left( {1 + 3x} \right)}} \)

LG d

\(\displaystyle \left( {{x \over {{x^2} - 25}} - {{x - 5} \over {{x^2} + 5x}}} \right):{{2x - 5} \over {{x^2} + 5x}}\)\(\displaystyle  + {x \over {5 - x}}\)

Phương pháp giải:

Vận dụng kiến thức về quy tắc thực hiện các phép tính cộng, trừ, nhân, chia phân thức.

Lời giải chi tiết:

\(\displaystyle \left( {{x \over {{x^2} - 25}} - {{x - 5} \over {{x^2} + 5x}}} \right)\)\(:\displaystyle {{2x - 5} \over {{x^2} + 5x}} + {x \over {5 - x}}\)

\(\displaystyle   = \left[ {{x \over {\left( {x + 5} \right)\left( {x - 5} \right)}} - {{x - 5} \over {x\left( {x + 5} \right)}}} \right]\)\(:\displaystyle {{2x - 5} \over {x\left( {x + 5} \right)}} + {x \over {5 - x}}  \)\(\displaystyle   = {{{x^2} - {{\left( {x - 5} \right)}^2}} \over {x\left( {x + 5} \right)\left( {x - 5} \right)}}.{{x\left( {x + 5} \right)} \over {2x - 5}}\)\(\displaystyle  + {x \over {5 - x}}  \)\( \displaystyle  = {{{x^2} - {x^2} + 10x - 25} \over {\left( {x - 5} \right)\left( {2x - 5} \right)}} + {x \over {5 - x}}\)\(\displaystyle  = {{5\left( {2x - 5} \right)} \over {\left( {x - 5} \right)\left( {2x - 5} \right)}} - {x \over {x - 5}}  \)\(\displaystyle   = {5 \over {x - 5}} - {x \over {x - 5}} = {{5 - x} \over {x - 5}}\)\(\displaystyle  = {{ - \left( {x - 5} \right)} \over {x - 5}} =  - 1 \)

LG e

\(\displaystyle \left( {{{{x^2} + xy} \over {{x^3} + {x^2}y + x{y^2} + {y^3}}} + {y \over {{x^2} + {y^2}}}} \right):\)\(\displaystyle \left( {{1 \over {x - y}} - {{2xy} \over {{x^3} - {x^2}y + x{y^2} - {y^3}}}} \right)\)

Phương pháp giải:

Vận dụng kiến thức về quy tắc thực hiện các phép tính cộng, trừ, nhân, chia phân thức.

Lời giải chi tiết:

\(\displaystyle \left( {{{{x^2} + xy} \over {{x^3} + {x^2}y + x{y^2} + {y^3}}} + {y \over {{x^2} + {y^2}}}} \right)\)\(:\displaystyle \left( {{1 \over {x - y}} - {{2xy} \over {{x^3} - {x^2}y + x{y^2} - {y^3}}}} \right)\)

\( = \left[ {\dfrac{{{x^2} + xy}}{{{x^2}\left( {x + y} \right) + {y^2}\left( {x + y} \right)}} + \dfrac{y}{{{x^2} + {y^2}}}} \right]\)\(:\left[ {\dfrac{1}{{x - y}} - \dfrac{{2xy}}{{{x^2}\left( {x - y} \right) + {y^2}\left( {x - y} \right)}}} \right]\)

\(\displaystyle   = \left[ {{{{x^2} + xy} \over {\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)}} + {y \over {{x^2} + {y^2}}}} \right]\)\(:\displaystyle \left[ {{1 \over {x - y}} - {{2xy} \over {\left( {{x^2} + {y^2}} \right)\left( {x - y} \right)}}} \right]  \)\(\displaystyle   = {{{x^2} + xy + y\left( {x + y} \right)} \over {\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)}}\)\(:\displaystyle {{{x^2} + {y^2} - 2xy} \over {\left( {{x^2} + {y^2}} \right)\left( {x - y} \right)}}  \)\(\displaystyle   = {{{x^2} + xy + xy + {y^2}} \over {\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)}}\)\(.\displaystyle  {{\left( {{x^2} + {y^2}} \right)\left( {x - y} \right)} \over {{{\left( {x - y} \right)}^2}}}  \)\(\displaystyle   = {{{{\left( {x + y} \right)}^2}} \over {\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)}}\)\(.\displaystyle  {{\left( {{x^2} + {y^2}} \right)\left( {x - y} \right)} \over {{{\left( {x - y} \right)}^2}}}\)\(\displaystyle  = {{x + y} \over {x - y}}\)

Loigiaihay.com


Bình chọn:
4.5 trên 11 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí