Bài 6 trang 196 SBT toán 9 tập 2


Giải bài 6 trang 196 sách bài tập toán 9. Cho đường tròn (O). Khoảng cách từ O đến dây MN của đường tròn bằng 7cm ...

Đề bài

Cho đường tròn \((O)\). Khoảng cách từ \(O\) đến dây \(MN\) của đường tròn bằng \(7cm\), \(\widehat {OMN} = {45^o}\). Trên dây \(MN\) lấy một điểm \(K\) sao cho \(MK=3KN\) (h.123). Độ dài đoạn \(MK\) là:

(A) \(10,5\;cm;\)                          (B) \(9\;cm;\)

(C) \(14\;cm;\)                              (D) \(12\;cm.\)

Hãy chọn đáp số đúng.

Phương pháp giải - Xem chi tiết

Sử dụng: Trong tam giác cân đường cao ứng với cạnh đáy đồng thời là đường trung tuyến, đường trung trực, đường phân giác.

Lời giải chi tiết

Gọi \(H\) là chân đường cao hạ từ \(O\) đến \(MN\).

\(\Delta OHM\) có \(\widehat {OHM} = {90^o};\,\widehat {OMH} = {45^o}\) nên \(\Delta OHM\) vuông cân tại \(H\).

\( \Rightarrow  MH=OH=7\,cm\).

Lại có \(\Delta OMN\) có \(OM=ON=\) bán kính nên \(\Delta OMN\) cân tại \(O\).

Do đó \(OH\) vừa là đường cao đồng thời là trung tuyến của \(\Delta OMN\).

\( \Rightarrow MH = NH = 7\,cm.\)

Ta có: \(MN=MH+NH=7+7=14\,cm\).

Mà \(MK=3KN\) nên \(MK = \dfrac{3}{4}MN = \dfrac{3}{4}.14 = 10,5\,\left( {cm} \right).\)

Chọn A.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu
  • Bài 7 trang 196 SBT toán 9 tập 2

    Giải bài 7 trang 196 sách bài tập toán 9. Cho đường tròn (O;4cm) và một điểm M sao cho OM = 8cm. Kẻ tiếp tuyến MN với đường tròn (O), N là tiếp điểm (h.124)...

  • Bài 8 trang 196 SBT toán 9 tập 2

    Giải bài 8 trang 196 sách bài tập toán 9. Cho đường tròn (O;8cm) và đường tròn (O';6cm) có đoạn nối tâm OO'=10cm. Đường tròn (O) cắt OO' tại N, đường tròn (O') cắt OO' tại M (h.125)...

  • Bài 9 trang 196 SBT toán 9 tập 2

    Giải bài 9 trang 196 sách bài tập toán 9. Trên hình 126, số đo góc MPN nhỏ hơn số đo góc MON là 35^o. Tổng số đo hai góc MPN và MON là ...

  • Bài 10 trang 197 SBT toán 9 tập 2

    Giải bài 10 trang 197 sách bài tập toán 9. Cho hai đường tròn (O;16cm) và (O';9cm) tiếp xúc ngoài tại A. Gọi BC là tiếp tuyến chung ngoài của hai đường tròn (B thuộc (O), C thuộc (O')). Kẻ tiếp tuyến chung tại A cắt BC ở M...

  • Bài 11 trang 197 SBT toán 9 tập 2

    Giải bài 11 trang 197 sách bài tập toán 9. Cho tứ giác ABCD nội tiếp đường tròn (O;R) có hai đường chéo AC và BD vuông góc với nhau. Chứng minh rằng AB^2 + CD^2 = 4R^2.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí