Bài 47 trang 112 SBT toán 9 tập 1


Giải bài 47 trang 112 sách bài tập toán 9. Cho x là một góc nhọn, biểu thức sau đây có giá trị âm hay dương? Vì sao?

Đề bài

Cho \(x\) là một góc nhọn, biểu thức sau đây có giá trị âm hay dương? Vì sao?

a) \(sin x-1\) 

b) \(1-\cos x\)

c) \(\sin x-\cos x\)

d) \(tgx-cotgx\)

Phương pháp giải - Xem chi tiết

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì sin\(\alpha\) tăng.

Hay \(\alpha  < \beta \) thì \(\sin \alpha  < \sin \beta. \)

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì cos\(\alpha\) giảm.

Hay  \(\alpha  < \beta \) thì \(\cos \alpha  > \cos \beta .\)

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì tg\(\alpha\) tăng.

Hay \(\alpha  < \beta \) thì \(tg \alpha  < tg \beta. \)

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì cotg\(\alpha\) giảm.

Hay  \(\alpha  < \beta \) thì \(cotg \alpha  > cotg \beta .\)

Lời giải chi tiết

a) Ta có: \(0^\circ  < \alpha  < 90^\circ \) với thì \({\mathop{\rm sinx}\nolimits}  < 1\), suy ra \({\mathop{\rm sinx}\nolimits}  - 1 < 0\)

b) Ta có: \(0^\circ  < \alpha  < 90^\circ \) với thì \({\mathop{\rm cosx}\nolimits}  < 1\), suy ra \(1 - \cos x > 0\)

c) Ta có:  

*  Nếu \(x = 45°\) thì \(sinx = cosx\), suy ra: \({\mathop{\rm s}\nolimits} {\rm{inx}} - \cos x = 0\)

*  Nếu \(x < 45°\) thì \(\cos x = \sin (90^\circ  - x)\)

Vì \(x < 45°\) nên \(90^\circ  - x > 45^\circ \) hay \(x<90^\circ  - x \), suy ra: \({\mathop{\rm s}\nolimits} {\rm{inx}} < \sin (90^\circ  - x)\)

Vậy \(\sin x<\cos x\) hay \({\mathop{\rm s}\nolimits} {\rm{inx}} - \cos x < 0\)

*  Nếu \(x > 45°\)  thì \(\cos x = \sin (90^\circ  - x)\)

Vì \(x > 45°\) nên \(90^\circ  - x < 45^\circ \) hay \(x>90^\circ  - x \), suy ra: \({\mathop{\rm s}\nolimits} {\rm{inx}} > \sin (90^\circ  - x)\)

Vậy \(\sin x>\cos x\) hay \({\mathop{\rm s}\nolimits} {\rm{inx}} - c{\rm{osx > 0}}\).

d) Ta có:

*     Nếu \(x = 45°\) thì \(tgx = cotgx\), suy ra: \(tgx - cotgx = 0\)

*     Nếu \(x < 45°\)  thì \(\cot gx = tg(90^\circ  - x)\)

Vì \(x < 45°\)  nên \(90^\circ  - x > 45^\circ \) hay \(x<90^\circ  - x \), suy ra: \(tgx < tg(90^\circ  - x)\)

Vậy \(tgx < cotgx \) hay \(tgx – cotgx < 0.\)

*     Nếu \(x > 45°\)  thì \(\cot gx = tg(90^\circ  - x)\)

Vì \(x > 45°\)  nên \(90^\circ  - x < 45^\circ \) hay \(x>90^\circ  - x \), suy ra: \(tgx > tg(90^\circ  - x)\)

Vậy  \(tgx > cotgx \) hay \(tgx – cotgx > 0.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 8 phiếu

Các bài liên quan: - Bài 3. Bảng lượng giác

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài