Bài 45 trang 112 SBT toán 9 tập 1


Giải bài 45 trang 112 sách bài tập toán 9. Không dùng bảng lượng giác và máy tính bỏ túi, hãy so sánh:...

Lựa chọn câu để xem lời giải nhanh hơn

Không dùng bảng lượng giác và máy tính bỏ túi, hãy so sánh: 

LG a

\(\sin 25^\circ \) và \(\sin 70^\circ \);

Phương pháp giải:

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì sin\(\alpha\) tăng.

Hay \(\alpha  < \beta \) thì \(\sin \alpha  < \sin \beta. \)

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì cos\(\alpha\) giảm.

Hay  \(\alpha  < \beta \) thì \(\cos \alpha  > \cos \beta .\) 

Lời giải chi tiết:

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì sin\(\alpha\) tăng

Ta có: \(25^\circ  < 75^\circ \), suy ra: \(\sin 25^\circ  < \sin 75^\circ \) 

LG b

\(\cos 40^\circ \) và \(\cos 75^\circ \) ;

Phương pháp giải:

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì sin\(\alpha\) tăng.

Hay \(\alpha  < \beta \) thì \(\sin \alpha  < \sin \beta. \)

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì cos\(\alpha\) giảm.

Hay  \(\alpha  < \beta \) thì \(\cos \alpha  > \cos \beta .\) 

Lời giải chi tiết:

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì cos\(\alpha\) giảm

Ta có: \(40^\circ  < 75^\circ \), suy ra: \({\rm{cos40}}^\circ {\rm{ >  cos}}75^\circ \)

LG c

\(\sin 38^\circ \) và \(\cos 38^\circ \) ; 

Phương pháp giải:

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì sin\(\alpha\) tăng.

Hay \(\alpha  < \beta \) thì \(\sin \alpha  < \sin \beta. \)

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì cos\(\alpha\) giảm.

Hay  \(\alpha  < \beta \) thì \(\cos \alpha  > \cos \beta .\) 

Lời giải chi tiết:

Ta có: \(38^\circ  + 52^\circ  = 90^\circ \), suy ra: \(\cos 38^\circ  = \sin 52^\circ \)

Vì \(38^\circ  < 52^\circ \) nên \(\sin 38^\circ  < \sin 52^\circ \) hay \(\sin 38^\circ  < \cos 38^\circ \)

LG d

\(\sin 50^\circ \) và \(\cos 50^\circ \).  

Phương pháp giải:

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì sin\(\alpha\) tăng.

Hay \(\alpha  < \beta \) thì \(\sin \alpha  < \sin \beta. \)

Với \(0^\circ  < \alpha  < 90^\circ \) ta có \(\alpha\) tăng thì cos\(\alpha\) giảm.

Hay  \(\alpha  < \beta \) thì \(\cos \alpha  > \cos \beta .\) 

Lời giải chi tiết:

Ta có: \(40^\circ  + 50^\circ  = 90^\circ ,\) suy ra: \(\sin 50^\circ  = \cos 40^\circ \)

Vì \(40^\circ  < 50^\circ \) nên \(\cos 40^\circ  > \cos 50^\circ \) hay \(\sin 50^\circ  > \cos 50^\circ \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.1 trên 9 phiếu

Các bài liên quan: - Bài 3. Bảng lượng giác

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài