Bài 30 trang 53 SBT toán 8 tập 2


Đề bài

a) Với số \(a\) bất kì, chứng tỏ \(a\left( {a + 2} \right) < {\left( {a + 1} \right)^2}.\)

b) Chứng minh rằng : Trong ba số nguyên liên tiếp thì bình phương số đứng giữa lớn hơn tích hai số còn lại.

Phương pháp giải - Xem chi tiết

- Áp dụng hằng đẳng thức \((a+b)^2=a^2+2ab+b^2\)

Áp dụng tính chất: Khi cộng cùng một số vào hai vế của một bất đẳng thức ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

Quảng cáo
decumar

Lời giải chi tiết

a) Ta có:

\(\eqalign{  & 0 < 1 \Rightarrow {a^2} + 2a + 0 < {a^2} + 2a + 1  \cr  &  \Rightarrow {a^2} + 2a < {\left( {a + 1} \right)^2}  \cr  &  \Rightarrow a\left( {a + 2} \right) < {\left( {a + 1} \right)^2} \cr} \)

b) Gọi \(a,\, a + 1,\, a + 2\) là ba số nguyên liên tiếp, ta có:

\({\left( {a + 1} \right)^2} = {a^2} + 2a + 1\)         \((1)\)

\(a\left( {a + 2} \right) = {a^2} + 2a\)               \((2)\)

Từ \((1)\) và \((2)\) suy ra: \(a^2+2a<a^2+2a+1\) (câu a) nên \(a\left( {a + 2} \right) < {\left( {a + 1} \right)^2}\)

Vậy trong ba số nguyên liên tiếp thì bình phương số đứng giữa lớn hơn tích hai số còn lại.

Loigiaihay.com


Bình chọn:
4.4 trên 11 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K10 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.