Bài 29 trang 53 SBT toán 8 tập 2


Giải bài 29 trang 53 sách bài tập toán 8. Cho a và b là các số dương, chứng tỏ: a/b + b/a ≥ 2.

Đề bài

Cho \(a\) và \(b\) là các số dương, chứng tỏ :

\(\displaystyle {a \over b} + {b \over a} \ge 2\)

Phương pháp giải - Xem chi tiết

- Áp dụng hẳng đẳng thức: \((a-b)^2=a^2-2ab+b^2\)

- Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương : Khi nhân cả hai vế của một bất đẳng thức với cùng một số dương ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

Lời giải chi tiết

+) Ta có:

\(\eqalign{  & {\left( {a - b} \right)^2} \ge 0 \Rightarrow {a^2} + {b^2} - 2ab \ge 0  \cr  &  \Rightarrow {a^2} + {b^2} - 2ab + 2ab \ge 2ab \cr} \)

  \( \Rightarrow {a^2} + {b^2} \ge 2ab\)    \((*)\)

+) Với \(\displaystyle a > 0,b > 0 \Rightarrow a.b > 0 \Rightarrow {1 \over {ab}} > 0\)

Nhân hai vế của \((*)\) với \(\displaystyle{1 \over {ab}}\) ta có :

\(\eqalign{  & \left( {{a^2} + {b^2}} \right).{1 \over {ab}} \ge 2ab.{1 \over {ab}}  \cr  &  \Leftrightarrow {{{a^2}} \over {ab}} + {{{b^2}} \over {ab}} \ge 2  \cr  &  \Leftrightarrow {a \over b} + {b \over a} \ge 2 \,\cr} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 5 phiếu

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài