Bài 20 trang 7 SBT toán 8 tập 1


Giải bài 20 trang 7 sách bài tập toán 8. Tìm giá trị lớn nhất của các đa thức:...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị lớn nhất của các đa thức:

LG a

\(\) \(A = 4x - {x^2} + 3\)

Phương pháp giải:

Sử dụng hằng đẳng thức để đánh giá các biểu thức đã cho: \(m-(A-B)^2 \le m\) với mọi \(A,\,B.\) Dấu \("="\) xảy ra khi \(A=B\).

Lời giải chi tiết:

\(\) \(A = 4x - {x^2}+ 3 = 7 - {x^2} + 4x - 4 \)\(= 7 - \left( {{x^2} - 4x + 4} \right) = 7 - {\left( {x - 2} \right)^2}\)

Ta có: \({\left( {x - 2} \right)^2} \ge 0\)  với mọi \(x\)

Suy ra: \(A = 7 - {\left( {x - 2} \right)^2} \le 7\)

Do đó \(A=7 \Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy giá trị của \(A\) lớn nhất là \(7\) tại \(x = 2\)

LG b

\(\) \(B = x - {x^2}\)

Phương pháp giải:

Sử dụng hằng đẳng thức để đánh giá các biểu thức đã cho: \(m-(A-B)^2 \le m\) với mọi \(A,\,B.\) Dấu \("="\) xảy ra khi \(A=B\).

Lời giải chi tiết:

\(\) \(B = x - {x^2}\)\( =\displaystyle {1 \over 4} - {x^2} + x - {1 \over 4}\)\( = \displaystyle{1 \over 4} - \left( {{x^2} - 2.x.{1 \over 2} + {1 \over 4}} \right) \)\(=\displaystyle {1 \over 4} - {\left( {x - {1 \over 2}} \right)^2}\) 

Vì \({\left( {x - \displaystyle{1 \over 2}} \right)^2} \ge 0\) với mọi \(x\)

Suy ra: \(B =\displaystyle {1 \over 4} - {\left( {x - {1 \over 2}} \right)^2} \le {1 \over 4}\)

Do đó: \(B=\dfrac{1}4\Leftrightarrow x-\dfrac{1}2=0\Leftrightarrow  x=\dfrac{1}2\)

Vậy giá trị lớn nhất của biểu thức \(B\) là \(\displaystyle{1 \over 4}\) tại \(x = \displaystyle{1 \over 2}\)

LG c

\(\) \(N = 2x - 2{x^2} - 5\)

Phương pháp giải:

Sử dụng hằng đẳng thức để đánh giá các biểu thức đã cho: \(m-(A-B)^2 \le m\) với mọi \(A,\,B.\) Dấu \("="\) xảy ra khi \(A=B\).

Lời giải chi tiết:

\(\) \(N = 2x - 2{x^2} – 5\) \( =  - 2\left( {{x^2} - x +\displaystyle {5 \over 2}} \right)\)\( = \displaystyle - 2\left( {{x^2} - 2.x.{1 \over 2} + {1 \over 4} + {9 \over 4}} \right)\)

   \( =  - 2\left[ {{{\left( {x - \displaystyle{1 \over 2}} \right)}^2} + \displaystyle{9 \over 4}} \right]\)\( =  - 2{\left( {x - \displaystyle{1 \over 2}} \right)^2} - \displaystyle {9 \over 2}\)

Vì\({\left( {x -\displaystyle {1 \over 2}} \right)^2} \ge 0\) với mọi \(x\) nên \( - 2{\left( {x - \displaystyle{1 \over 2}} \right)^2} \le 0\) với mọi \(x\).

Suy ra: \(N =  - 2{\left( {x - \displaystyle{1 \over 2}} \right)^2} - \displaystyle{9 \over 2} \le  - {9 \over 2}\)

Do đó \(N=-\dfrac{9}2\Leftrightarrow x-\dfrac{1}2=0\Leftrightarrow x=\dfrac{1}2\)

Vậy giá trị lớn nhất của biểu thức \(N\) là \( - \displaystyle{9 \over 2}\)  tại \(x = \displaystyle{1 \over 2}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.6 trên 34 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài