Bài 15 trang 7 SBT toán 8 tập 1


Đề bài

Biết số tự nhiên \(a\) chia cho \(5\) dư \(4.\) Chứng minh rằng \({a^2}\) chia cho \(5\) dư \(1.\)

Phương pháp giải - Xem chi tiết

+) Sử dụng hằng đẳng thức: \( (A+B)^2=A^2+2AB+B^2\)

Áp dụng tính chất: Nếu trong một tích các số tự nhiên có một thừa số chia hết cho một số nào đó thì tích cũng chia hết cho số đó. 

Lời giải chi tiết

Số tự nhiên \(a\) chia cho \(5\) dư \(4\)\( \Rightarrow a=5k+4 (k \in \mathbb N)\)

Ta có: \({a^2} = {\left( {5k + 4} \right)^2}\)\(= 25{k^2} + 40k + 16\)\( = 25{k^2} + 40k + 15 + 1  \)

\( = 5\left( {5{k^2} + 8k + 3} \right) + 1\)

Mà \( 5\left( {5{k^2} + 8k + 3} \right) \; \vdots\; 5\) nên \(  5\left( {5{k^2} + 8k + 3} \right) + 1\) chia cho 5 dư 1. 

Vậy \({a^2} = {\left( {5k + 4} \right)^2}\) chia cho \(5\) dư \(1\)

Loigiaihay.com


Bình chọn:
4.7 trên 47 phiếu

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài