Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 2 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 2 - Hình học 9

Đề bài

Cho ∆ABC cân tại A, đường cao AH và BK cắt nhau tại I. Chứng minh rằng HK là tiếp tuyến của đường tròn đường kính AI.

Lời giải chi tiết

Gọi O là tâm đường tròn đường kính AI. Hiển nhiên K thuộc (O) (vì \(\widehat {AKI} = 90^\circ \) )

∆ABC cân tại A có AH là đường cao (gt) nên AH đồng thời là đường trung tuyến \(⇒ HB = HC.\)

Xét ∆BKC vuông tại K có KH là đường trung tuyến nên \(KH = BH = {{BC} \over 2}\)

Do đó ∆BHK cân tại H \( \Rightarrow {\widehat B_1} = \widehat {BKH}\) (1)

Lại có ∆IOK cân tại O \(\left( {OI = OK = {{AI} \over 2}} \right)\)

\( \Rightarrow {\widehat I_2} = \widehat {OKI},\) mà \({\widehat I_2} = {\widehat I_1}\) (đối đỉnh)

\( \Rightarrow \widehat {OKI} = {\widehat I_1}\)  (2)

Mặt khác ∆BHI vuông tại H (gt) nên \({\widehat B_1} + {\widehat I_1} = 90^\circ \) (3)

Từ (1), (2) và (3), ta có: \(\widehat {BKH} + \widehat {OKI} = 90^\circ \) hay \(HK ⊥ OK\).

Vậy HK là tiếp tuyến của đường tròn (O).

Loigiaihay.com


Bình chọn:
3.2 trên 5 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài