Đề kiểm tra 15 phút - Đề số 1 - Bài 4 - Chương 2 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 4 - Chương 2 - Hình học 9

Đề bài

Cho nửa đường tròn (O), đường kính AB và một dây cung CD. Vẽ AP và BS vuông góc với CD. Chứng minh:

a. P và S ở bên ngoài đường tròn.

b. \(PC = DS\)

Phương pháp giải - Xem chi tiết

Sử dụng: 

Điểm A nằm ngoài đường tròn (O;R) nếu OA>R 

Trong một đường tròn, đường kính vuông góc với một dây thì qua trung điểm của dây ấy.

Lời giải chi tiết

a. Ta có: AP // BS (⊥ CD) nên tứ giác APSB là hình thang vuông.

Kẻ \(OE ⊥ CD.\) Khi đó OE là đường trung bình của hình thang nên \(EP = ES.\)

Trong hình thang APSD có: 

\(\widehat {OAP} + \widehat {OBS} = 180^\circ \)

và giả sử \(\widehat {OAP} \ge 90^\circ ,\)

Xét ∆PAO ta có: \(\widehat {PAO} > \widehat {APO} \Rightarrow OP > AO\)

mà AO là bán kính, do đó P nằm ngoài (O).

Mặt khác \(EP = ES\) (cmt)

\(⇒ SO = PO > OA\) nên S nằm ngoài (O)

b. Vì OE vuông góc với dây CD nên ta có: \(CE = DE\) (định lí đường kính dây cung)

mà \(EP = ES\) (cmt)

\(⇒ EP – CE = ES – DE\) hay \(PC = DS\).

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.3 trên 6 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài