

Đề kiểm tra 15 phút - Đề số 1 - Bài 4 - Chương 2 - Hình học 9>
Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 4 - Chương 2 - Hình học 9
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho nửa đường tròn (O), đường kính AB và một dây cung CD. Vẽ AP và BS vuông góc với CD. Chứng minh:
a. P và S ở bên ngoài đường tròn.
b. \(PC = DS\)
Phương pháp giải - Xem chi tiết
Sử dụng:
Điểm A nằm ngoài đường tròn (O;R) nếu OA>R
Trong một đường tròn, đường kính vuông góc với một dây thì qua trung điểm của dây ấy.
Lời giải chi tiết
a. Ta có: AP // BS (⊥ CD) nên tứ giác APSB là hình thang vuông.
Kẻ \(OE ⊥ CD.\) Khi đó OE là đường trung bình của hình thang nên \(EP = ES.\)
Trong hình thang APSD có:
\(\widehat {OAP} + \widehat {OBS} = 180^\circ \)
và giả sử \(\widehat {OAP} \ge 90^\circ ,\)
Xét ∆PAO ta có: \(\widehat {PAO} > \widehat {APO} \Rightarrow OP > AO\)
mà AO là bán kính, do đó P nằm ngoài (O).
Mặt khác \(EP = ES\) (cmt)
\(⇒ SO = PO > OA\) nên S nằm ngoài (O)
b. Vì OE vuông góc với dây CD nên ta có: \(CE = DE\) (định lí đường kính dây cung)
mà \(EP = ES\) (cmt)
\(⇒ EP – CE = ES – DE\) hay \(PC = DS\).
Loigiaihay.com


- Đề kiểm tra 15 phút - Đề số 2 - Bài 4 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 3 - Bài 4 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 5 - Bài 4 - Chương 2 - Hình học 9
- Bài 20 trang 110 SGK Toán 9 tập 1
>> Xem thêm
Các bài khác cùng chuyên mục