
Đề bài
Cho tam giác MNP nhọn. Các trung tuyến ME, NF cắt nhau tại G. Trên tia đối của tia FN lấy điểm D sao cho FD = FN.
a) Chứng minh rằng \(\Delta MFN = \Delta PFD\)
b) Trên đoạn thẳng FD lấy điểm H sao cho F là trung điểm GH. Gọi K là trung điểm DP. Chứng minh ba điểm M, H, K thẳng hàng.
Lời giải chi tiết
a) Xét ∆MFN và ∆PFD có: MF = FP (F là trung điểm của MP)
\(\widehat {MFN} = \widehat {PFD}\) (đối đỉnh)
FN = FD (gt)
Do đó: ∆MFN = ∆PFD (c.g.c).
b) ∆MNP có hai đường trung tuyến ME và NF cắt nhau tại G (gt)
=> G là trọng tâm của ∆MNP \( \Rightarrow NG = {2 \over 3}NF\)
Ta có: NF = FD (gt) và GF = FH (F là trung điểm của GH)
=> NF – GF = FD – FH => NG = HD
Mà \(NG = {2 \over 3}NF\) và NF = FD (gt). Nên \(HD = {2 \over 3}FD\)
∆MDP có DF là đường trung tuyến.
(F là trung điểm của MP) và \(HD = {2 \over 3}DF\)
Do đó H là trọng tâm của tam giác MDP.
Mà MK là đường trung tuyến của ∆MDP (K là trung điểm của DP)
Nên MK đi qua H => M, H, K thẳng hàng.
Loigiaihay.com
Giải bài tập Cho tam giác ABC vuông tại A
Giải bài tập Cho tam giác ABC vuông tại A. Tia phân giác của góc C cắt AB ở M
Giải bài tập Cho tam giác DEF vuông tại D
Giải bài tập Cho tam giác nhọn ABC (AB < AC). Đường trung trực của BC cắt AC ở M. Chứng minh rằng AM + BM = AC.
Giải bài tập Cho tam giác ABC có ba đường cao AD, BE, CF . Biết AD = BE = CF. Chứng minh rằng tam giác ABC đều.
Giải bài tập Cho tam giác ABC cân tại A
Giải bài tập Cho tam giác ABC nhọn (AB < AC), vẽ đường cao AH. Đường trung trực của cạnh BC cắt AC tại M, cắt BC tại N.
Giải bài tập Hai làng A và B nằm cùng phía bên bờ sông (hình 77). Hằng ngày, các em học sinh phải vượt sông đến trường ở bên kia sông trên những chiếc bè gỗ. Để đảm bảo an toàn cho học sinh, người ta dự định xây một cây cầu bắc ngang sông. Hãy tìm địa điểm C trên bờ sông để xây cầu sao cho tổng quãng đường từ đầu cầu đến hai làng A và B là ngắn nhất.
Giải bài tập Ở hình 76, cho biết:
>> Xem thêm
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: