Bài 9 trang 58 Tài liệu dạy – học Toán 9 tập 2


Giải bài tập Cho phương trình

Đề bài

Cho phương trình \({x^2} - mx + m - 2 = 0\) (m là tham số)

a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m

b) Định m để phương trình có hai nghiệm phân biệt thỏa mãn \(\dfrac{{{x_1}^2 - 2}}{{{x_1} - 1}}.\dfrac{{{x_2}^2 - 2}}{{{x_2} - 1}} = 4\)

Phương pháp giải - Xem chi tiết

a)Để chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m ta chứng minh cho \(\Delta \left( {\Delta '} \right) > 0,\forall m\)

b) Biến đổi \(\dfrac{{{x_1}^2 - 2}}{{{x_1} - 1}}.\dfrac{{{x_2}^2 - 2}}{{{x_2} - 1}} = 4\)về đẳng thức có chứa \({x_1} + {x_1};{x_1}.{x_2}\)  sau đó thay hệ thức Viet \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \dfrac{b}{a}\\{x_1}.{x_2} = \dfrac{c}{a}\end{array} \right.\) vào  ta tìm được m

Lời giải chi tiết

Cho phương trình \({x^2} - mx + m - 2 = 0\,\,\,\left( 1 \right)\) (m là tham số)

a) Xét

\(\Delta  = {\left( { - m} \right)^2} - 4\left( {m - 2} \right)\)\(\, = {m^2} - 4m + 8 = {m^2} - 2.2.m + 4 + 4 \)\(\,= {\left( {m - 2} \right)^2} + 4 > 0,\forall m\)

Khi đó phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.

b) Do phương trình luôn có hai nghiệm phân biệt \({x_1};{x_2}\) nên áp dụng hệ thức Viet cho phương trình (1) ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}.{x_2} = m - 2\end{array} \right.\)

Nếu \(\left[ \begin{array}{l}{x_1} = 1\\{x_2} = 1\end{array} \right.\)

\(\Rightarrow \left( 1 \right) \Leftrightarrow 1 - m + m - 2 = 0\)

\(\Leftrightarrow  - 1 = 0\left( {ktm} \right) \Rightarrow {x_1} \ne 1;{x_2} \ne 1\)

\(\begin{array}{l}\dfrac{{{x_1}^2 - 2}}{{{x_1} - 1}}.\dfrac{{{x_2}^2 - 2}}{{{x_2} - 1}} = 4\\ \Leftrightarrow \left( {{x_1}^2 - 2} \right).\left( {{x_2}^2 - 2} \right) = 4\left( {{x_1} - 1} \right).\left( {{x_2} - 1} \right)\\ \Leftrightarrow {x_1}^2.{x_2}^2 - 2{x_1}^2 - 2{x_2}^2 + 4 = 4\left( {{x_1}{x_2} - {x_1} - {x_2} + 1} \right)\\ \Leftrightarrow {\left( {{x_1}{x_2}} \right)^2} - 2\left( {x_1^2 + x_2^2} \right) + 4 - 4{x_1}{x_2} + 4\left( {{x_1} + {x_2}} \right) - 4 = 0\\ \Leftrightarrow {\left( {{x_1}{x_2}} \right)^2} - 2\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right] - 4{x_1}{x_2} + 4\left( {{x_1} + {x_2}} \right) = 0\\ \Leftrightarrow {\left( {{x_1}{x_2}} \right)^2} - 2{\left( {{x_1} + {x_2}} \right)^2} + 4{x_1}{x_2} - 4{x_1}{x_2} + 4\left( {{x_1} + {x_2}} \right) = 0\\ \Leftrightarrow {\left( {{x_1}{x_2}} \right)^2} - 2{\left( {{x_1} + {x_2}} \right)^2} + 4\left( {{x_1} + {x_2}} \right) = 0\\ \Leftrightarrow {\left( {m - 2} \right)^2} - 2.{m^2} + 4.m = 0\\ \Leftrightarrow {m^2} - 4m + 4 - 2{m^2} + 4m = 0\\ \Leftrightarrow {m^2} = 4\\ \Leftrightarrow m =  \pm 2\end{array}\)

Vậy \(m = 2\) hoặc \(m = -2\) thỏa mãn yêu cầu bài toán.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.5 trên 6 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài